
2 Dimensional Arrays

AP Computer Science, Garfield HS, Feb 2012 Earl Bergquist
Supplement presentation for AP CS based on: Building Java Programs, Chapter 7
by Stuart Reges and Marty Stepp (http://www.buildingjavaprograms.com/)

Amazing 2D Glasses
from

http://www.freakngenius.com/

2

How can we use them?

• Tables of Data – as seen in MS Excel
• Represent Images
• And Grid Based Games…

3

2D Arrays

Any type can be an array…
o  char[]!
o  String[]!
o  DrawingPanel[]!

And they can be a 2D Arrays
o  char[][]!
o  String[][]!
o  DrawingPanel[][]!

For example, we can make a board of char’s:

board[][]!

4

Declaring and initializing

Declaration similar to a single dimension Array:
 char[][] board = new char[3][3];!
•  Size of both dimensions must be defined
•  Remember that it is filled with zero-equivalent values

Starting values can be initialized with nested { }’s:
char[][] board = {{'X', 'O', 'X'},!

! ! ! {'O', 'X', 'O'},!
 {'X', 'O', 'X'}};!
This effectively creates an Array of Array’s…
Sizes are defined by the length of the elements added.

5

Different Dimensions

Width and height can be different:
 int[][] nums = new int[5][4];!
•  height is first (“an array...”)
•  width is second (“...of arrays”)

i.e. num[0][1] == 8 !
(index starts with 0)
So num[?][?] is 7?
num[2][2] == ?

 num[3][2] == 7!
 num[2][2] == 6
 !

6

Let’s try some more

[5][4] 0 1 2 3

0 0 0 0 0

1 0 0 0 0

2 0 0 0 0

3 0 0 0 0

4 0 0 0 0

int[][] nums = new int[5][4];!
!
!
nums[0][0] = 1;!
nums[0][1] = 2;!
nums[1][0] = 10;!
nums[3][2] = 5;!
nums[2][3] = 10;!
nums[4][2] = 66;!
!
It can be a bit tedious.
!
!

[5][4] 0 1 2 3

0 1 2 0 0

1 10 0 0 0

2 0 0 0 10

3 0 0 5 0

4 0 0 66 0

7

Jagged Arrays

Not all rows in an array have to be the same length.
!
int[][] jagged = new int[3][];!
!
jagged [0] = new int[2];!
jagged [1] = new int[5];!
jagged [2] = new int[4];

0 0 0

[3] 0 1 2 3 4 …

1 0 0 0 0 0

2 0 0 0 0

Make sure to check lengths of each row before acting.

8

2D Array Lengths

[5][4] 0 1 2 3

0 1 2 0 0

1 10 0 0 0

2 0 0 0 10

3 0 0 5 0

4 0 0 66 0

nums.length - returns array’s height or number of rows (no [])

nums[0].length - returns array’s width or columns - at that
row [], which is the same for regular arrays.

int[][] nums = new int[5][4];!
!

nums.length is 5!
nums[0].length is 4!
All rows same width here.
nums[1].length is 4!
nums[2].length is 4…!
!
!
Row Width will vary for jagged arrays.

9

Traversing Arrays

•  Acting on 2D arrays usually involves nested for loops
using the length dimensions – keep track of row &
columns carefully and name variables wisely.

!

 // fills all elements of an int array with  
 // sequential values starting at 1  
 public static void fillArray (int nums[][]){  
 int count = 1;  
 for (int row = 0; row < nums.length ; row++){  
 for (int col = 0; col < nums[0].length ; col++){  
 nums[row][col] = count;  
 count++;  
 }  
 }  
 }  
!

•  Will this work for a jagged array? If not how can we fix it??
Try it with sample code ArrayOver.java:
(http://www.garfieldcs.com/wordpress/wordpress/wp-content/uploads/2013/02/ArrayOver.java)

