
XP: Extreme Programming &
Agile Development

Plan, code, test, and repeat till the customer is
satisfied

Sources: O’Reilly’s Extreme Programming and general industry
knowledge of XP & Agile Development

Major Features of XP

�  Lightweight planning and tracking
� Agile for adaptability
� Unit testing along the way
�  “A little bit of planning, a little bit of coding,

and a little bit of testing let you decide if
you’re right or wrong while it’s still cheap to
change your mind.”

�  Freedom to Experiment – always asking if
there is a better way to do something –
Innovation Welcome!

XP’s Core Values

� Communications
�  Feedback
�  Simplicity
� Courage

By Trevithj (Own work) [CC-BY-SA-3.0 (http://creativecommons.org/licenses/by-sa/3.0)], via Wikimedia
Commons from Wikimedia Commons

Communications

� Essential to any project
� Allows adjustment to change
� Developers know what to do &

Customers know when it will be done
� Hidden or ignored information can sink a

project

Feedback
� Ask questions and learn from the answers
� Only way to know if code works is to test it
� Only way to know what someone wants is

to ask them
�  Tests should ensure the user’s needs are met
�  Sooner you get feedback, the sooner you

can make changes to accommodate it
� Only way to know if code works is to test it

By Trevithj (Own work) [CC-BY-SA-3.0 (http://creativecommons.org/licenses/by-sa/3.0)], via Wikimedia
Commons from Wikimedia Commons

Simplicity

� Build the system that really needs to be
built

� Only solve today’s problems today
� Complexity costs and predicting the

future is difficult
�  If you have good communications and

feedback, you will better know what is
really needed

Courage

� Make hard decisions when necessary
� Be honest when reporting progress
�  If you need help ask for it
�  If code needs improvement or fixing, just

do it – it’s a team effort
� Decide what you can deliver and do it

Scrum
�  Scrum (rugby) “… is a method of re-

starting play … utilised (sic) either after an
accidental infringement or when the ball has
gone out of play… The scrum then 'engages'
with the opposition team so that the player's
heads are interlocked with those of the
other side's front row. ” Wikipedia

�  Scrum (development) “Scrum is an iterative
and incremental agile software development
method for managing software projects and
product or application development.”
Wikipedia

Roles

� Customers – control what stories to be
worked on

� Developers – determine tasks and make
estimates for overall stories

�  Scrum Master – tracks progress on active
tasks leading up to story completion,
along with backlog of uncompleted tasks

� Coach – mentor to assist teams in
progressing

Sprints: the Iterations of Agile Development

�  Planning – determine which Customer
Stories & Developer Tasks to work on with
estimates of time to accomplish

� Create Tests to effectively verify each Story
�  Execution of Tasks - coding
�  Integration & build of code
�  Testing & demonstration to customer
�  Then usually back to the top for additional

Sprint iterations
� Once enough functionality is complete -

Release!

Sprints

� Typically every 1-3 weeks in most
companies – we will target 2 weeks?

� Each includes all the previously mentioned
steps: Planning, Coding (completing tasks),
Integrating, and Testing

� After a Sprint, apply what was learned and
use that to better plan the next set of
tasks to work on. For example, fix bugs
found in testing and adapt features.

Sprint Planning

� Customer creates Stories to describe
features & specifications

� Developers estimate time to implement a
Story by…

�  Breaking down Stories into Tasks (steps)
to accomplish them

� Developer estimates time for each Task
�  Based on estimates, customer chooses which

Tasks to be accomplished within the Sprint
and they are divided among developers

Story Cards
� Created by Customers to communicate

what needs to be done
�  Each describes a single feature in a story

form – a sentence or two from the
customers’ perspective

� All features start with Story Cards and
Developers can suggest stories

�  Each story should stand on its own and be
testable once completed

�  Some stories may never be built – it’s better
to have just written it down than to have
coded it

Task Cards (Post-Its)
� Created by Developers to describe how

stories should be accomplished
� Given a story, Developers break it into

tasks, sketching out its implementation
details

� Every task is related to a story
� Tasks should be small, ideally a few hours

to complete
� Every story requires a task of writing its

acceptance tests with the customer

Tasks assembled in a backlog

� Task completion allows the “Burndown”
of the backlog – till done

Special cases:
Spike Solution / Proof of Concept

If a story is too hard to break into tasks
easily or if a task is too hard to
implement, then a “spike solution” or
“proof of concept” experiment is done -
a pair of developers write a portion of
code to explore the problem and learn
enough so it can be broken down into
tasks or determined unfeasible.

Special cases:
The First Iteration
�  Should choose several small tasks to lay out

the basic architecture of the project, end to
end as much as possible

� Gathers real data on how to proceed
�  Building this skeleton helps fine tune your

overall processes like source control, build &
release before things get too complicated to
change

� Also identify any possible show-stopper
risks, so those can be addressed and solved
upfront. Better to know their cost earlier
than later.

Working on Tasks during a Sprint

�  Start with the riskiest and most
important tasks at the start, leaving easier
ones for later

� Work on only one task at a time, keep
focused

�  If you get stuck, swap tasks with another
team member to get a fresh perspective

� Have regular “stand-up” meetings

Stand-Up (Daily Scrum) Meeting

� Meeting is kept short by requiring all
attendees to stand, usually held daily

� Each team member answers 3 questions:
◦ What I did yesterday?
◦ What I am doing today?
◦  Is there anything blocking me?

� This let’s everyone know what is going on
and allows suggestions to reuse code or
help solve blocking issues

3 Questions

Scrum Process

By Lakeworks (Own work) [GFDL (http://www.gnu.org/copyleft/fdl.html) or CC-BY-SA-3.0-2.5-2.0-1.0
(http://creativecommons.org/licenses/by-sa/3.0)], via Wikimedia Commons from Wikimedia Commons

Sprints: the Iterations of Agile Development

�  Planning – determine which Customer
Stories & Developer Tasks to work on with
estimates of time to accomplish

� Create Tests to effectively verify each Story
�  Execution of Tasks - coding
�  Integration & build of code
�  Testing & demonstration to customer
�  Then usually back to the top for additional

Sprint iterations
� Once enough functionality is complete -

Release!

Schedule for a 2 week Sprint
This is a proposal – any suggestions…

�  1st Monday: Sprint Planning meeting,
determine Stories and Tasks

�  1st Thursday: Story test cases finalized
�  2nd Thursday: integration, build & testing
�  2nd Friday: demonstration of new features

(stories) and identification of fixes & tasks to
go into next Sprint - or are we ready to
release?

�  Stand-up meetings: 1st Tuesday & Thursday,
2nd Monday & Thursday

Next Activity: Start Sprint Planning:

� Write/Research the Customer Stories for
our Projects

� Review those Stories with other teams
for feedback and make them concise

�  Finalize set of Stories to start with
� THEN we can start breaking them down

into development tasks

Questions??

