
Copyright 2008 by Pearson Education

Review pages for the
AP CS Exam

NOTE: Sections that are not considered part of the
Java Subset for the AP CS exam are not included in

these pages, for example Scanners.

Taken from the UW 143 Review
Building Java Programs: Ch. 1-10

Subset of the Supplement Lesson slides from: Building Java Programs, Chapter 1-10
by Stuart Reges and Marty Stepp (http://www.buildingjavaprograms.com/) & thanks to Ms Martin.

Copyright 2008 by Pearson Education
2

List of Items not included in the AP CS exam,
but we covered in class to build projects.

  char: Chapter 4.4
  Scanners
  Drawing Panel & Graphics
  Random Class (5.1)
  Reading Files (6.1)
  Input Tokens (6.2)
  Output to Files (6.4)
  PrintStream

These items are not included in these pages

Copyright 2008 by Pearson Education
3

A Java program (1.2)
class: a program

statement: a command to be executed

method: a named group
of statements

Copyright 2008 by Pearson Education
4

System.out.println
  A statement that prints a line of output on the console.

  pronounced "print-linn"
  sometimes called a "println statement" for short

  Two ways to use System.out.println :

•  System.out.println("text");
 Prints the given message as output.

•  System.out.println();

 Prints a blank line of output.

Copyright 2008 by Pearson Education
5

Static methods (1.4)
  static method: A named group of statements.

  denotes the structure of a program
  eliminates redundancy by code reuse

  procedural decomposition:
dividing a problem into methods

  Writing a static method is like
adding a new command to Java.

class
method A

  statement
  statement
  statement

method B
  statement
  statement

method C
  statement
  statement
  statement

Copyright 2008 by Pearson Education
6

Gives your method a name so it can be executed

  Syntax:

public static void name() {
 statement;
 statement;
 ...
 statement;
}

  Example:
public static void printWarning() {
 System.out.println("This product causes cancer");
 System.out.println("in lab rats and humans.");
}

Declaring a method

Copyright 2008 by Pearson Education
7

Calling a method
Executes the method's code

  Syntax:

 name();

  You can call the same method many times if you like.

  Example:

 printWarning();

  Output:

 This product causes cancer
 in lab rats and humans.

Copyright 2008 by Pearson Education
8

  When a method is called, the program's execution...
  "jumps" into that method, executing its statements, then
  "jumps" back to the point where the method was called.

public class MethodsExample {

 public static void main(String[] args) {

 message1();

 message2();

 System.out.println("Done with main.");

 }

 ...

}

public static void message1() {
 System.out.println("This is message1.");
}

public static void message2() {
 System.out.println("This is message2.");
 message1();

 System.out.println("Done with message2.");
}

public static void message1() {
 System.out.println("This is message1.");
}

Control flow

Copyright 2008 by Pearson Education
9

Java's primitive types (2.1)
  primitive types: 8 simple types for numbers, text, etc.

  Java also has object types, which we'll talk about later

 Name Description Examples

  int integers 42, -3, 0, 926394

  double real numbers 3.1, -0.25, 9.4e3

  char single text characters 'a', 'X', '?', '\n'

  boolean logical values true, false

•  Why does Java distinguish integers vs. real numbers?

Copyright 2008 by Pearson Education
10

Expressions
  expression: A value or operation that computes a value.

•  Examples: 1 + 4 * 5
 (7 + 2) * 6 / 3

 42

  The simplest expression is a literal value.
  A complex expression can use operators and parentheses.

Copyright 2008 by Pearson Education
11

Integer division with /
  When we divide integers, the quotient is also an integer.

  14 / 4 is 3, not 3.5

 3 4 52
 4) 14 10) 45 27) 1425
 12 40 135
 2 5 75
 54
 21

  More examples:
  32 / 5 is 6
  84 / 10 is 8
  156 / 100 is 1

  Dividing by 0 causes an error when your program runs.

Copyright 2008 by Pearson Education
12

Integer remainder with %
  The % operator computes the remainder from integer division.

  14 % 4 is 2
  218 % 5 is 3

 3 43
 4) 14 5) 218
 12 20
 2 18
 15
 3

  Applications of % operator:
  Obtain last digit of a number: 230857 % 10 is 7
  Obtain last 4 digits: 658236489 % 10000 is 6489
  See whether a number is odd: 7 % 2 is 1, 42 % 2 is 0

What is the result?
45 % 6

2 % 2

8 % 20

11 % 0

Copyright 2008 by Pearson Education
13

Precedence
  precedence: Order in which operators are evaluated.

  Generally operators evaluate left-to-right.
1 - 2 - 3 is (1 - 2) - 3 which is -4

  But */% have a higher level of precedence than +-
1 + 3 * 4 is 13

 6 + 8 / 2 * 3
 6 + 4 * 3
 6 + 12 is 18

  Parentheses can force a certain order of evaluation:
(1 + 3) * 4 is 16

  Spacing does not affect order of evaluation
1+3 * 4-2 is 11

Copyright 2008 by Pearson Education
14

String concatenation
  string concatenation: Using + between a string and

another value to make a longer string.
 "hello" + 42 is "hello42"
 1 + "abc" + 2 is "1abc2"
 "abc" + 1 + 2 is "abc12"
 1 + 2 + "abc" is "3abc"
 "abc" + 9 * 3 is "abc27"
 "1" + 1 is "11"
 4 - 1 + "abc" is "3abc"

  Use + to print a string and an expression's value together.

  System.out.println("Grade: " + (95.1 + 71.9) / 2);

•  Output: Grade: 83.5

Copyright 2008 by Pearson Education
15

Variables (2.2)
  variable: A piece of the computer's memory that is given a

name and type, and can store a value.

  A variable can be declared/initialized in one statement.

  Syntax:
 type name = value;

  double myGPA = 3.95;

  int x = (11 % 3) + 12;

x 14

myGPA 3.95

Copyright 2008 by Pearson Education
16

Type casting
  type cast: A conversion from one type to another.

  To promote an int into a double to get exact division from /
  To truncate a double from a real number to an integer

  Syntax:

 (type) expression

 Examples:

 double result = (double) 19 / 5; // 3.8
 int result2 = (int) result; // 3
 int x = (int) Math.pow(10, 3); // 1000

Copyright 2008 by Pearson Education
17

Increment and decrement
shortcuts to increase or decrease a variable's value by 1

Shorthand Equivalent longer version
variable++; variable = variable + 1;
variable--; variable = variable - 1;

int x = 2;
x++; // x = x + 1;
 // x now stores 3

double gpa = 2.5;
gpa--; // gpa = gpa - 1;
 // gpa now stores 1.5

Copyright 2008 by Pearson Education
18

Integer methods
intValue(value) Returns value as an int

Integer.MIN_VALUE A constant holding the minimum value an int
can have

Integer.MAX_VALUE A constant holding the maximum value an int
can have

Integer(value) Constructs a newly allocated Integer object
that represents the specified int value.

Part of the java.lang.Integer NOTE: these are the only List
methods used in the AP CS Exam.

Copyright 2008 by Pearson Education
19

Modify-and-assign operators
shortcuts (NOT REQUIRED for AP CS A)

Shorthand Equivalent longer version
variable += value; variable = variable + value;
variable -= value; variable = variable - value;
variable *= value; variable = variable * value;
variable /= value; variable = variable / value;
variable %= value; variable = variable % value;

x += 3; // x = x + 3;

gpa -= 0.5; // gpa = gpa - 0.5;

number *= 2; // number = number * 2;

Copyright 2008 by Pearson Education
20

for loops (2.3)
 for (initialization; test; update) {
 statement;
 statement;
 ...
 statement;
 }

  Perform initialization once.
  Repeat the following:

  Check if the test is true. If not, stop.
  Execute the statements.
  Perform the update.

 body

 header

Copyright 2008 by Pearson Education
21

System.out.print
  Prints without moving to a new line

  allows you to print partial messages on the same line

 int highestTemp = 5;
 for (int i = -3; i <= highestTemp / 2; i++) {
 System.out.print((i * 1.8 + 32) + " ");
 }

•  Output:
 26.6 28.4 30.2 32.0 33.8 35.6

Copyright 2008 by Pearson Education
22

Nested loops
  nested loop: A loop placed inside another loop.

 for (int i = 1; i <= 4; i++) {
 for (int j = 1; j <= 5; j++) {
 System.out.print((i * j) + "\t");
 }
 System.out.println(); // to end the line
 }

  Output:
 1 2 3 4 5
 2 4 6 8 10
 3 6 9 12 15
 4 8 12 16 20

  Statements in the outer loop's body are executed 4 times.
  The inner loop prints 5 numbers each time it is run.

Copyright 2008 by Pearson Education
23

Variable scope
  scope: The part of a program where a variable exists.

  From its declaration to the end of the { } braces
  A variable declared in a for loop exists only in that loop.
  A variable declared in a method exists only in that method.

public static void example() {
 int x = 3;
 for (int i = 1; i <= 10; i++) {
 System.out.println(x);
 }
 // i no longer exists here
} // x ceases to exist here

x's scope

i's
 s

co
pe

Copyright 2008 by Pearson Education
24

Class constants (2.4)
  class constant: A value visible to the whole program.

  value can only be set at declaration
  value can't be changed while the program is running

  Syntax:
 public static final type name = value;

  name is usually in ALL_UPPER_CASE

  Examples:
 public static final int DAYS_IN_WEEK = 7;
 public static final double INTEREST_RATE = 3.5;
 public static final int SSN = 658234569;

Copyright 2008 by Pearson Education
25

Parameters (3.1)
  parameter: A value passed to a method by its caller.

  Instead of lineOf7, lineOf13, write line to draw any length.
  When declaring the method, we will state that it requires a

parameter for the number of stars.
  When calling the method, we will specify how many stars to draw.

main line *******
7

line ************* 13

Copyright 2008 by Pearson Education
26

Passing parameters
  Declaration:

public static void name (type name, ..., type name) {

 statement(s);
}

  Call:
methodName (value, value, ..., value);

  Example:
public static void main(String[] args) {
 sayPassword(42); // The password is: 42
 sayPassword(12345); // The password is: 12345
}

public static void sayPassword(int code) {
 System.out.println("The password is: " + code);
}

Copyright 2008 by Pearson Education
27

Java's Math class (3.2)
Method name Description

Math.abs(int value) returns int absolute value

Math.abs(double value) returns double absolute value

Math.pow(base, exp) base to the exp power

Math.sqrt(value) square root

Math.random() random double between 0 and 1

These are the only Math Methods required for the AP
CS, others can be used for the Free Response
Questions (FRQ), but will not be in the Multiple Choice.

Copyright 2008 by Pearson Education
28

Return (3.2)
  return: To send out a value as the result of a method.

  The opposite of a parameter:
  Parameters send information in from the caller to the method.
  Return values send information out from a method to its caller.

main

Math.abs(42) -42

Math.round(2.71)

2.71

42

3

Copyright 2008 by Pearson Education
29

Returning a value
public static type name(parameters) {
 statements;
 ...
 return expression;
}

  Example:
// Returns the slope of the line between the given points.
public static double slope(int x1, int y1, int x2, int y2) {
 double dy = y2 - y1;
 double dx = x2 - x1;
 return dy / dx;
}

Copyright 2008 by Pearson Education
30

Method Overloading (3.1)
  method overloading: The ability to define two different or

more different methods with the same name but different
number and/or type of parameters.
 public static void drawBox() { // no parameters
 // has code that creates a standard sized box
 ...
 }
 public static void drawBox(int height, int width) {
 // code that draws the box based on the height and
 // width parameter values
 ...
 }

Which method used is based on how it is called:
 drawBox(); // uses the first drawBox method
 drawBox(10,20); // uses second drawBox method

Copyright 2008 by Pearson Education
31

Strings (3.3)
  string: An object storing a sequence of text characters.

 String name = "text";
 String name = expression;

  Characters of a string are numbered with 0-based indexes:

 String name = "P. Diddy";

  The first character's index is always 0
  The last character's index is 1 less than the string's length
  The individual characters are values of type char

index 0 1 2 3 4 5 6 7
char P . D i d d y

Copyright 2008 by Pearson Education
32

String methods

  These methods are called using the dot notation:

String gangsta = "Dr. Dre";
System.out.println(gangsta.length()); // 7

Method name Description
indexOf(str) index where the start of the given string

appears in this string (-1 if it is not there)
length() number of characters in this string
substring(index1,
index2)
or
substring(index1)

the characters in this string from index1
(inclusive) to index2 (exclusive);
if index2 omitted, grabs till end of string

compareTo(String other) returns <0 if this is less than other
returns 0 if this is equal to other
returns >0 if this is greater than other

Note: These are the only String methods required for the AP CS...

Copyright 2008 by Pearson Education
33

The equals method
  Objects are compared using a method named equals.

 Scanner console = new Scanner(System.in);
 System.out.print("What is your name? ");
 String name = console.next();
 if (name.equals("Barney")) {
 System.out.println("I love you, you love me,");
 System.out.println("We're a happy family!");
 }

  Technically this is a method that returns a value of type boolean,
the type used in logical tests.

Copyright 2008 by Pearson Education
34

Cumulative sum (4.1)
  A loop that adds the numbers from 1-1000:

 int sum = 0;
 for (int i = 1; i <= 1000; i++) {
 sum = sum + i;
 }
 System.out.println("The sum is " + sum);

 Key idea:

  Cumulative sum variables must be declared outside the loops
that update them, so that they will exist after the loop.

Copyright 2008 by Pearson Education
35

if/else (4.2)
Executes one block if a test is true, another if false

 if (test) {
 statement(s);
 } else {
 statement(s);
 }

  Example:
 double gpa = console.nextDouble();
 if (gpa >= 2.0) {
 System.out.println("Welcome to Mars University!");
 } else {
 System.out.println("Application denied.");
 }

Copyright 2008 by Pearson Education
36

Relational expressions
  A test in an if is the same as in a for loop.

 for (int i = 1; i <= 10; i++) { ...

 if (i <= 10) { ...

  These are boolean expressions, seen in Ch. 5.

  Tests use relational operators:
Operator Meaning Example Value

== equals 1 + 1 == 2 true

!= does not equal 3.2 != 2.5 true

< less than 10 < 5 false

> greater than 10 > 5 true

<= less than or equal to 126 <= 100 false

>= greater than or equal to 5.0 >= 5.0 true

Copyright 2008 by Pearson Education
37

Logical operators: &&, ||, !
  Conditions can be combined using logical operators:

  "Truth tables" for each, used with logical values p and q:

Operator Description Example Result
&& and (2 == 3) && (-1 < 5) false

|| or (2 == 3) || (-1 < 5) true

! not !(2 == 3) true

p q p && q p || q
true true true true

true false false true

false true false true

false false false false

p !p
true false

false true

Copyright 2008 by Pearson Education
38

Type boolean (5.2)
  boolean: A logical type whose values are true and false.

  A test in an if, for, or while is a boolean expression.

  You can create boolean variables, pass boolean parameters,
return boolean values from methods, ...

 boolean minor = (age < 21);
 boolean expensive = iPhonePrice > 200.00;
 boolean iLoveCS = true;

 if (minor) {
 System.out.println("Can't purchase alcohol!");
 }
 if (iLoveCS || !expensive) {
 System.out.println("Buying an iPhone");
 }

Copyright 2008 by Pearson Education
39

De Morgan's Law
  De Morgan's Law:

Rules used to negate or reverse boolean expressions.
  Useful when you want the opposite of a known boolean test.

  Example:

Original Expression Negated Expression Alternative

a && b !a || !b !(a && b)

a || b !a && !b !(a || b)

Original Code Negated Code

if (x == 7 && y > 3) {

 ...

}

if (x != 7 || y <= 3) {

 ...

}

Copyright 2008 by Pearson Education
40

if/else Structures
  Exactly 1 path: (mutually exclusive)

if (test) {
 statement(s);
} else if (test) {
 statement(s);
} else {
 statement(s);
}

  0 or 1 path:

if (test) {
 statement(s);
} else if (test) {
 statement(s);
} else if (test) {
 statement(s);
}

  0, 1, or many paths: (independent tests, not exclusive)

if (test) {
 statement(s);
}
if (test) {
 statement(s);
}
if (test) {
 statement(s);
}

Copyright 2008 by Pearson Education
41

Fencepost loops (4.1)
  fencepost problem: When we want to repeat two tasks,

one of them n times, another n-1 or n+1 times.
  Add a statement outside the loop to place the initial "post."
  Also called a fencepost loop or a "loop-and-a-half" solution.

  Algorithm template:

 place a post.
 for (length of fence - 1) {
 place some wire.
 place a post.
 }

Copyright 2008 by Pearson Education
42

Fencepost method solution
  Write a method printNumbers that prints each number

from 1 to a given maximum, separated by commas.

For example, the call:
printNumbers(5);

 should print:
1, 2, 3, 4, 5

  Solution:
public static void printNumbers(int max) {
 System.out.print(1);
 for (int i = 2; i <= max; i++) {
 System.out.print(", " + i);
 }
 System.out.println(); // to end the line
}

Copyright 2008 by Pearson Education
43

while loops (5.1)
  while loop: Repeatedly executes its

body as long as a logical test is true.

 while (test) {
 statement(s);
 }

  Example:
 int num = 1; // initialization
 while (num <= 200) { // test
 System.out.print(num + " ");
 num = num * 2; // update
 }

  OUTPUT:
 1 2 4 8 16 32 64 128

Copyright 2008 by Pearson Education
44

do/while loops (5.4)
  do/while loop: Executes statements repeatedly while a

condition is true, testing it at the end of each repetition.

 do {
 statement(s);
 } while (test);

  Example:

 // prompt until the user gets the right password
 String phrase;
 do {
 System.out.print("Password: ");
 phrase = console.next();
 } while (!phrase.equals("abracadabra"));

Copyright 2008 by Pearson Education
45

"Boolean Zen"
  Students new to boolean often test if a result is true:

if (bothOdd(7, 13) == true) { // bad
 ...
}

  But this is unnecessary and redundant. Preferred:

if (bothOdd(7, 13)) { // good
 ...
}

  A similar pattern can be used for a false test:

if (bothOdd(7, 13) == false) { // bad
if (!bothOdd(7, 13)) { // good

Copyright 2008 by Pearson Education
46

"Boolean Zen", part 2
  Methods that return boolean often have an
if/else that returns true or false:

 public static boolean bothOdd(int n1, int n2) {
 if (n1 % 2 != 0 && n2 % 2 != 0) {
 return true;
 } else {
 return false;
 }
 }

  Observation: The if/else is unnecessary.
  Our logical test is itself a boolean value; so return that!

 public static boolean bothOdd(int n1, int n2) {

 return (n1 % 2 != 0 && n2 % 2 != 0);
 }

Copyright 2008 by Pearson Education
47

The throws clause
  throws clause: Keywords on a method's header that state

that it may generate an exception.

  Syntax:

 public static type name(params) throws type {

  Example:
 public class ReadFile {

 public static void main(String[] args)

 throws FileNotFoundException {

  Like saying, "I hereby announce that this method might throw
an exception, and I accept the consequences if it happens."

Copyright 2008 by Pearson Education
48

Arrays (7.1)
  array: object that stores many values of the same type.

  element: One value in an array.
  index: A 0-based integer to access an element from an array.

index 0 1 2 3 4 5 6 7 8 9

value 12 49 -2 26 5 17 -6 84 72 3

element 0 element 4 element 9

Copyright 2008 by Pearson Education
49

Array declaration
type[] name = new type[length];

  Example:
 int[] numbers = new int[10];

index 0 1 2 3 4 5 6 7 8 9

value 0 0 0 0 0 0 0 0 0 0

Copyright 2008 by Pearson Education
50

Accessing elements
name[index] // access
name[index] = value; // modify

  Example:

 numbers[0] = 27;
 numbers[3] = -6;

 System.out.println(numbers[0]);
 if (numbers[3] < 0) {
 System.out.println("Element 3 is negative.");
 }

index 0 1 2 3 4 5 6 7 8 9

value 0 0 0 0 0 0 0 0 0 0

index 0 1 2 3 4 5 6 7 8 9

value 27 0 0 -6 0 0 0 0 0 0

Copyright 2008 by Pearson Education
51

Out-of-bounds
  Legal indexes: between 0 and the array's length - 1.

  Reading or writing any index outside this range will throw an
ArrayIndexOutOfBoundsException.

  Example:
 int[] data = new int[10];
 System.out.println(data[0]); // okay
 System.out.println(data[9]); // okay
 System.out.println(data[-1]); // exception
 System.out.println(data[10]); // exception

index 0 1 2 3 4 5 6 7 8 9

value 0 0 0 0 0 0 0 0 0 0

Copyright 2008 by Pearson Education
52

The length field
  An array's length field stores its number of elements.

 name.length

 for (int i = 0; i < numbers.length; i++) {
 System.out.print(numbers[i] + " ");
 }
 // output: 0 2 4 6 8 10 12 14

  It does not use parentheses like a String's .length().

Copyright 2008 by Pearson Education
53

Quick array initialization
type[] name = {value, value, … value};

  Example:
 int[] numbers = {12, 49, -2, 26, 5, 17, -6};

  Useful when you know what the array's elements will be.
  The compiler figures out the size by counting the values.

index 0 1 2 3 4 5 6

value 12 49 -2 26 5 17 -6

Copyright 2008 by Pearson Education
54

The Arrays class
  Class Arrays in package java.util has useful static

methods for manipulating arrays:

Method name Description
binarySearch(array, value) returns the index of the given value

in a sorted array (< 0 if not found)
equals(array1, array2) returns true if the two arrays

contain the same elements in the
same order

fill(array, value) sets every element in the array to
have the given value

sort(array) arranges the elements in the array
into ascending order

toString(array) returns a string representing the
array, such as "[10, 30, 17]"

Copyright 2008 by Pearson Education
55

Arrays as parameters
  Declaration:

 public static type methodName(type[] name) {

  Example:
 public static double average(int[] numbers) {
 ...
 }

  Call:
 methodName(arrayName);

  Example:
 int[] scores = {13, 17, 12, 15, 11};
 double avg = average(scores);

Copyright 2008 by Pearson Education
56

Arrays as return
•  Declaring:

 public static type[] methodName(parameters) {

  Example:
 public static int[] countDigits(int n) {
 int[] counts = new int[10];
 ...
 return counts;
 }

•  Calling:
 type[] name = methodName(parameters);

  Example:

 public static void main(String[] args) {
 int[] tally = countDigits(229231007);
 System.out.println(Arrays.toString(tally));
 }

Copyright 2008 by Pearson Education
57

Value semantics (primitives)
  value semantics: Behavior where values are copied when

assigned to each other or passed as parameters.

  When one primitive variable is assigned to another,
its value is copied.

  Modifying the value of one variable does not affect others.

 int x = 5;
 int y = x; // x = 5, y = 5
 y = 17; // x = 5, y = 17
 x = 8; // x = 8, y = 17

x

y

Copyright 2008 by Pearson Education
58

Reference semantics (objects)
  reference semantics: Behavior where variables actually

store the address of an object in memory.
  When one reference variable is assigned to another, the object

is not copied; both variables refer to the same object.
  Modifying the value of one variable will affect others.

 int[] a1 = {4, 5, 2, 12, 14, 14, 9};
 int[] a2 = a1; // refer to same array as a1
 a2[0] = 7;
 System.out.println(a1[0]); // 7

index 0 1 2 3 4 5 6

value 4 5 2 12 14 14 9

index 0 1 2 3 4 5 6

value 7 5 2 12 14 14 9

a1

a2

Copyright 2008 by Pearson Education
59

Null
  null : A reference that does not refer to any object.

  Fields of an object that refer to objects are initialized to null.
  The elements of an array of objects are initialized to null.

 String[] words = new String[5];
 DrawingPanel[] windows = new DrawingPanel[3];

index 0 1 2 3 4

value null null null null null

index 0 1 2

value null null null

words

windows

Copyright 2008 by Pearson Education
60

Null pointer exception
  dereference: To access data or methods of an object with

the dot notation, such as s.length().
  It is illegal to dereference null (causes an exception).

  null is not any object, so it has no methods or data.

 String[] words = new String[5];
 System.out.println("word is: " + words[0]);
 words[0] = words[0].toUpperCase();

 Output:
 word is: null
 Exception in thread "main"
java.lang.NullPointerException
 at Example.main(Example.java:8)

Copyright 2008 by Pearson Education
61

Classes and objects (8.1)
  class: A program entity that represents either:

 1. A program / module, or
 2. A template for a new type of objects.

  The DrawingPanel class is a template for creating
DrawingPanel objects.

 object: An entity that combines state and behavior.
  object-oriented programming (OOP): Programs that

perform their behavior as interactions between objects.

Copyright 2008 by Pearson Education
62

Fields (8.2)
  field: A variable inside an object that is part of its state.

  Each object has its own copy of each field.
  encapsulation: Declaring fields private to hide their data.

With few exceptions ALWAYS Make fields private in Objects.

  Declaration syntax:

 private type name;

  Example:

 public class Student {
 private String name; // each object now has
 private double gpa; // a name and gpa field
 }

Copyright 2008 by Pearson Education
63

Instance methods
  instance method: One that exists inside each object of a

class and defines behavior of that object.

 public type name(parameters) {
 statements;
 }

  same syntax as static methods, but without static keyword

 Example:

 public void shout() {
 System.out.println("HELLO THERE!");
 }

Copyright 2008 by Pearson Education
64

A Point class
public class Point {
 private int x;
 private int y;

 // Changes the location of this Point object.
 public void draw(Graphics g) {
 g.fillOval(x, y, 3, 3);
 g.drawString("(" + x + ", " + y + ")", x, y);
 }
}

  Each Point object contains data fields named x and y.
  Each Point object contains a method named draw that draws

that point at its current x/y position.

Copyright 2008 by Pearson Education
65

The implicit parameter
  implicit parameter:

The object on which an instance method is called.

  During the call p1.draw(g);
the object referred to by p1 is the implicit parameter.

  During the call p2.draw(g);
the object referred to by p2 is the implicit parameter.

  The instance method can refer to that object's fields.
  We say that it executes in the context of a particular object.

  draw can refer to the x and y of the object it was called on.

Copyright 2008 by Pearson Education
66

Kinds of methods
  Instance methods take advantage of an object's state.

  Some methods allow clients to access/modify its state.

  accessor: A method that lets clients examine object state.
  Example: A distanceFromOrigin method that tells how far a
Point is away from (0, 0).

  Accessors often have a non-void return type.

  mutator: A method that modifies an object's state.
  Example: A translate method that shifts the position of a
Point by a given amount.

Copyright 2008 by Pearson Education
67

Constructors (8.4)
  constructor: Initializes the state of new objects.

 public type(parameters) {
 statements;
 }

  Example:
 public Point(int initialX, int initialY) {
 x = initialX;
 y = initialY;
 }

  runs when the client uses the new keyword

  does not specify a return type; implicitly returns a new object

  If a class has no constructor, Java gives it a default constructor
with no parameters that sets all fields to 0.

Copyright 2008 by Pearson Education
68

toString method (8.6)
  tells Java how to convert an object into a String

 public String toString() {
 code that returns a suitable String;
 }

  Example:
 public String toString() {
 return "(" + x + ", " + y + ")";
 }

  called when an object is printed/concatenated to a String:

 Point p1 = new Point(7, 2);
 System.out.println("p1: " + p1);

  Every class has a toString, even if it isn't in your code.
  Default is class's name and a hex number: Point@9e8c34

Copyright 2008 by Pearson Education
69

this keyword (8.7)
  this : A reference to the implicit parameter.

  implicit parameter: object on which a method is called

  Syntax for using this:

  To refer to a field:
 this.field

  To call a method:
 this.method(parameters);

  To call a constructor from another constructor:
 this(parameters);

Copyright 2008 by Pearson Education
70

Static methods
  static method: Part of a class, not part of an object.

  shared by all objects of that class

  good for code related to a class but not to each object's state

  does not understand the implicit parameter, this;
therefore, cannot access an object's fields directly

  if public, can be called from inside or outside the class

  Declaration syntax:

 public static type name(parameters) {
 statements;
 }

Copyright 2008 by Pearson Education
71

Inheritance (9.1)
  inheritance: A way to form new classes based on existing

classes, taking on their attributes/behavior.
  a way to group related classes
  a way to share code between two or more classes

  One class can extend another, absorbing its data/behavior.
  superclass: The parent class that is being extended.
  subclass: The child class that extends the superclass and

inherits its behavior.
  Subclass gets a copy of every field and method from superclass

Copyright 2008 by Pearson Education
72

Inheritance syntax (9.1)
 public class name extends superclass {

  Example:

 public class Secretary extends Employee {
 ...

 }

  By extending Employee, each Secretary object now:
  receives a getHours, getSalary, getVacationDays, and
getVacationForm method automatically

  can be treated as an Employee by client code (seen later)

Copyright 2008 by Pearson Education
73

Overriding methods (9.1)
  override: To write a new version of a method in a subclass

that replaces the superclass's version.
  No special syntax required to override a superclass method.

Just write a new version of it in the subclass.

 public class Secretary extends Employee {
 // overrides getVacationForm in Employee class
 public String getVacationForm() {
 return "pink";
 }
 ...
 }

Copyright 2008 by Pearson Education
74

super keyword (9.3)
  Subclasses can call overridden methods with super

 super.method(parameters)

  Example:
 public class LegalSecretary extends Secretary {
 public double getSalary() {
 double baseSalary = super.getSalary();
 return baseSalary + 5000.0;
 }
 ...
 }

Copyright 2008 by Pearson Education
75

Abstract Class
  Abstract Class: A Java Class that cannot be instantiated, but that instead serves

as a superclass to hold common code and declare abstract behavior (methods)

  Abstract classes are useful when a superclass doesn’t correspond to a real “thing”
but more of an idea
  abstract classes can’t be instantiated (no new…)
  they can have fields
  they can have concrete methods
  they generally have abstract methods

public abstract class name {
 private <type> name; // can have fields
 //can have abstract and/or concrete methods...
 public type name(type name, ..., type name);
 public type name(type name, ..., type name){
 ... // statements of method
 }

}

Copyright 2008 by Pearson Education
76

Interfaces
  interface: A list of abstract methods that a class can implement.

  Interfaces give you an is-a relationship without code sharing.
  abstract method: A header without an implementation.

  The actual body is not specified, to allow/force different classes to
implement the behavior in its own way.

public interface name {
 public type name(type name, ..., type name);
 public type name(type name, ..., type name);
 ...
}

Example:
public interface Vehicle {
 public double speed();
 public void setDirection(int direction);
}

Copyright 2008 by Pearson Education
77

Implementing an interface
 public class name implements interface {
 ...
 }

  Example:
 public class Bicycle implements Vehicle {
 ...
 }

  A class can declare that it implements an interface.
  This means the class must contain each of the abstract methods in

that interface. (Otherwise, it will not compile.)

An Abstract Class can implement an interface
public abstract class name implements interface_name {
 ...
}

Copyright 2008 by Pearson Education
78

Polymorphism
  polymorphism: Ability for the same code to be used with

different types of objects and behave differently with each.
  Example: System.out.println can print any type of object.

  Each one displays in its own way on the console.

  A variable of type T can hold an object of any subclass of T.
 Employee ed = new LegalSecretary();

  You can call any methods from Employee on ed.
  You can not call any methods specific to LegalSecretary.

  When a method is called, it behaves as a LegalSecretary.
 System.out.println(ed.getSalary()); // 55000.0
 System.out.println(ed.getVacationForm()); // pink

Copyright 2008 by Pearson Education
79

Lists (10.1)
  list: a collection storing an ordered sequence of elements

  each element is accessible by a 0-based index
  a list has a size (number of elements that have been added)
  elements can be added to the front, back, or elsewhere
  in Java, a list can be represented as an ArrayList object

Copyright 2008 by Pearson Education
80

Idea of a list
  Rather than creating an array of boxes, create an object

that represents a "list" of items. (initially an empty list.)

 []

  You can add items to the list.
  The default behavior is to add to the end of the list.

 [hello, ABC, goodbye, okay]

  The list object keeps track of the element values that have
been added to it, their order, indexes, and its total size.
  Think of an "array list" as an automatically resizing array

object.
  Internally, the list is implemented using an array and a size

field.

Copyright 2008 by Pearson Education
81

Type Parameters (Generics)
ArrayList<Type> name = new ArrayList<Type>();

  When constructing an ArrayList, you must specify the
type of elements it will contain between < and >.
  This is called a type parameter or a generic class.
  Allows the same ArrayList class to store lists of different

types.

ArrayList<String> names = new ArrayList<String>();
names.add("Marty Stepp");
names.add("Stuart Reges");

Copyright 2008 by Pearson Education
82

ArrayList methods (10.1)
add(value) appends value at end of list (returns true

boolean)

add(index, value) inserts given value just before the given index,
shifting subsequent values to the right

indexOf(value) returns first index where given value is found
in list (-1 if not found)

get(index) returns the value at given index

remove(int index) removes & returns value (Object) at given
index, shifting subsequent values to the left

set(index, value) replaces value at given index with given value
& returns the previous Object, if needed

size() returns the number of elements in list

toString() returns a string representation of the list
such as "[3, 42, -7, 15]"

These are the only List methods used in the AP CS Exam.
class java.util.ArrayList<E> implements java.util.List<E>

