
Advanced if/else
& Cumulative Sum

Subset of the Supplement Lesson slides from: Building Java Programs, Chapter 4
by Stuart Reges and Marty Stepp (http://www.buildingjavaprograms.com/) & thanks to Ms Martin.

2

Questions to consider
• What are the advantages of using Returns?

• What do we have to consider when returning a value in a
series of nested if/else’s?

• What additional Operators do we need to make our if
conditions (tests) more useful?

3

if/else with return
// Returns the larger of the two given integers.
public static int max(int a, int b) {
 if (a > b) {
 return a;
 } else {
 return b;
 }
}

• Methods can return different values using if/else
–  Whichever path the code enters, it will return that value.
–  Returning a value causes a method to immediately exit.
–  All paths through the code must reach a return statement.

4

All paths must return
public static int max(int a, int b) {
 if (a > b) {
 return a;
 }
 // Error: not all paths return a value
}

• The following also does not compile:
public static int max(int a, int b) {
 if (a > b) {
 return a;
 } else if (b >= a) {
 return b;
 }
}

–  The compiler thinks if/else/if code might skip all paths, even
though mathematically it must choose one or the other.

5

Logic

6

Logical operators
• Tests can be combined using logical operators:

•  "Truth tables" for each, used with logical values p and q:

Operator Description Example Result
&& and (2 == 3) && (-1 <

5)
false

|| or (2 == 3) || (-1 <
5)

true

! not !(2 == 3) true

p q p && q p || q
true true true true

true false false true

false true false true

false false false false

p !p
true false

false true

7

Evaluating logic expressions
• Relational operators have lower precedence than math.

5 * 7 >= 3 + 5 * (7 - 1)
5 * 7 >= 3 + 5 * 6
35 >= 3 + 30
35 >= 33
true

• Relational operators cannot be "chained" as in algebra.

2 <= x <= 10
true <= 10 (assume that x is 15)
error!

–  Instead, combine multiple tests with && or ||

2 <= x && x <= 10
true && false
false

8

Logical questions
• What is the result of each of the following expressions?

 int x = 42;
 int y = 17;
 int z = 25;

–  y < x && y <= z
–  x % 2 == y % 2 || x % 2 == z % 2
–  x <= y + z && x >= y + z
–  !(x < y && x < z)
–  (x + y) % 2 == 0 || !((z - y) % 2 == 0)

• Answers: true, false, true, true, false

• Exercise: Write a program that prompts for information about a
person and uses it to decide whether to date them.

9

Factoring if/else code
•  factoring: Extracting common/redundant code.

–  Can reduce or eliminate redundancy from if/else code.

• Example:
if (a == 1) {
 System.out.println(a);
 x = 3;
 b = b + x;
} else if (a == 2) {
 System.out.println(a);
 x = 6;
 y = y + 10;
 b = b + x;
} else { // a == 3
 System.out.println(a);
 x = 9;
 b = b + x;
}

System.out.println(a);
x = 3 * a;
if (a == 2) {
 y = y + 10;
}
b = b + x;

10

if/else, return question
• Write a method quadrant that accepts a pair of real numbers

x and y and returns the quadrant for that point:

–  Example: quadrant(-4.2, 17.3) returns 2
• If the point falls directly on either axis, return 0.

x+ x-

y+

y-

quadrant 1 quadrant 2

quadrant 3 quadrant 4

11

if/else, return answer
public static int quadrant(double x, double y) {
 if (x > 0 && y > 0) {
 return 1;
 } else if (x < 0 && y > 0) {
 return 2;
 } else if (x < 0 && y < 0) {
 return 3;
 } else if (x > 0 && y < 0) {
 return 4;
 } else { // at least one coordinate equals 0
 return 0;
 }
}

12

Code Sample Example
• Write a method daysInMonth that accepts an integer

representing the month and returns the number of days in that
month.

• Assume there are no leap years

• Examples:
 daysInMonth(2) returns 28
 daysInMonth(5) returns 31

Cumulative algorithms

14

Adding many numbers
• How would you find the sum of all integers from 1-1000?

// This may require a lot of typing
int sum = 1 + 2 + 3 + 4 + ... ;
System.out.println("The sum is " + sum);

• What if we want the sum from 1 - 1,000,000?
Or the sum up to any maximum?
–  How can we generalize the above code?

15

Cumulative sum loop
 int sum = 0;
 for (int i = 1; i <= 1000; i++) {
 sum = sum + i;
 }
 System.out.println("The sum is " + sum);

•  cumulative sum: A variable that keeps a sum in progress and
is updated repeatedly until summing is finished.

–  The sum in the above code is an attempt at a cumulative sum.

–  Cumulative sum variables must be declared outside the loops that
update them, so that they will still exist after the loop.

16

Cumulative product
• This cumulative idea can be used with other operators:

int product = 1;
for (int i = 1; i <= 20; i++) {
 product = product * 2;
}
System.out.println("2 ^ 20 = " + product);

–  How would we make the base and exponent adjustable?

17

Scanner and cumul. sum
• We can do a cumulative sum of user input:

 Scanner console = new Scanner(System.in);
 int sum = 0;
 for (int i = 1; i <= 100; i++) {
 System.out.print("Type a number: ");
 sum = sum + console.nextInt();
 }
 System.out.println("The sum is " + sum);

From Lab: Write a method countFactors that returns the number of
factors of an integer.

i.e. countFactors(24) returns 8 because
1, 2, 3, 4, 6, 8, 12, and 24 are factors of 24

