
8 © 2010 The College Board. Visit the College Board on the Web: www.collegeboard.com.

T O P I C O U T L I N E
Following is an outline of the major topics considered for the AP Computer Science A
Exam. This outline is intended to define the scope of the course but not necessarily
the sequence.
I. Object-Oriented Program Design

The overall goal for designing a piece of software (a computer program) is to correctly
solve the given problem. At the same time, this goal should encompass specifying and
designing a program that is understandable, can be adapted to changing circumstances,
and has the potential to be reused in whole or in part. The design process needs to be
based on a thorough understanding of the problem to be solved.

A. Program design
 1. Read and understand a problem description, purpose, and goals.
 2. Apply data abstraction and encapsulation.
 3. Read and understand class specifications and relationships among the classes

(“is-a,” “has-a” relationships).
 4. Understand and implement a given class hierarchy.
 5. Identify reusable components from existing code using classes and class

libraries.
B. Class design
 1. Design and implement a class.
 2. Choose appropriate data representation and algorithms.
 3. Apply functional decomposition.
 4. Extend a given class using inheritance.

II. Program Implementation

The overall goals of program implementation parallel those of program design. Classes
that fill common needs should be built so that they can be reused easily in other
programs. Object-oriented design is an important part of program implementation.

A. Implementation techniques
 1. Methodology
 a. Object-oriented development
 b. Top-down development
 c. Encapsulation and information hiding
 d. Procedural abstraction
B. Programming constructs
 1. Primitive types vs. objects
 2. Declaration
 a. Constant declarations
 b. Variable declarations
 c. Class declarations
 d. Interface declarations
 e. Method declarations
 f. Parameter declarations

9© 2010 The College Board. Visit the College Board on the Web: www.collegeboard.com.

 3. Console output (System.out.print/println)
 4. Control
 a. Methods
 b. Sequential
 c. Conditional
 d. Iteration
 e. Understand and evaluate recursive methods

III. Program Analysis

The analysis of programs includes examining and testing programs to determine
whether they correctly meet their specifications. It also includes the analysis of
programs or algorithms in order to understand their time and space requirements
when applied to different data sets.

A. Testing
 1. Test classes and libraries in isolation.
 2. Identify boundary cases and generate appropriate test data.
 3. Perform integration testing.
B. Debugging
 1. Categorize errors: compile-time, run-time, logic.
 2. Identify and correct errors.
 3. Employ techniques such as using a debugger, adding extra output statements,
 or hand-tracing code.
C. Understand and modify existing code
D. Extend existing code using inheritance
E. Understand error handling
 1. Understand runtime exceptions.
F. Reason about programs
 1. Pre- and post-conditions
 2. Assertions
G. Analysis of algorithms
 1. Informal comparisons of running times
 2. Exact calculation of statement execution counts
H. Numerical representations and limits
 1. Representations of numbers in different bases
 2. Limitations of finite representations (e.g., integer bounds, imprecision of

floating-point representations, and round-off error)

10 © 2010 The College Board. Visit the College Board on the Web: www.collegeboard.com.

IV. Standard Data Structures

Data structures are used to represent information within a program. Abstraction is an
important theme in the development and application of data structures.

A. Simple data types (int, boolean, double)
B. Classes
C. Lists
D. Arrays

V. Standard Algorithms

Standard algorithms serve as examples of good solutions to standard problems. Many
are intertwined with standard data structures. These algorithms provide examples for
analysis of program efficiency.

A. Operations on data structures previously listed
 1. Traversals
 2. Insertions
 3. Deletions
B. Searching
 1. Sequential
 2. Binary
C. Sorting
 1. Selection
 2. Insertion
 3. Mergesort

VI. Computing in Context

An awareness of the ethical and social implications of computing systems is necessary
for the study of computer science. These topics need not be addressed in detail but
should be considered throughout the course.

A. System reliability
B. Privacy
C. Legal issues and intellectual property
D. Social and ethical ramifications of computer use

11© 2010 The College Board. Visit the College Board on the Web: www.collegeboard.com.

C O M M E N T A R Y O N T H E T O P I C O U T L I N E
The topic outline below summarizes the content of the AP Computer Science A
curriculum. In this section, we provide more details about the topics in the outline.

I. Object-Oriented Program Design
Computer science involves the study of complex systems. Computer software is part of
a complex system. To understand the development of computer software, we need
tools that can make sense of that complexity. Object-oriented design and programming
form an approach that enables us to do that, based on the idea that a piece of software,
just like a computer itself, is composed of many interacting parts.

The novice will start not by designing a whole program but rather by studying
programs already developed, then writing or modifying parts of a program to add
to or change its functionality. Only later in the first course will a student get to the
point of working from a specification to develop a design for a program or part of
a program.

In an object-oriented approach, the fundamental part of a program is an object,
an entity that has state (stores some data) and operations that access or change its
state and that may interact with other objects. Objects are defined by classes; a class
specifies the components and operations of an object, and each object is an instance of
a class.

A. Program Design
Students should be able to develop the parts of a program when given its design. This
would include an understanding of how to apply the data abstractions included in the
course (classes and arrays). Students are not expected to develop a full program
design.

Students should be able to understand the inheritance and composition relationships
among the different classes that comprise a program. They should also be able to
implement a class inheritance hierarchy when given the specifications for the classes
involved—which classes are subclasses of other classes.

B. Class Design
A fundamental part of the development of an object-oriented program is the design of a
class. Students should be able to design a class—write the class declaration including
the instance variables and the method signatures (the method bodies would comprise
the implementation of this design)—when they are given a description of the type of
entity the class represents. Such a description would include the data that must be
represented by the class and the operations that can be applied to that data. These
operations range from simple access to the data or information that can be derived
from the data, to operations that change the data (which stores the state) of an
instance of the class. The design of a class includes decisions on appropriate data
structures for storing data and algorithms for operations on that data. The decomposition
of operations into subsidiary operations—functional decomposition—is part of the
design process. An example of the process of designing a class is given in the sample
free-response question, which documents the logical considerations for designing a
savings account class.

12 © 2010 The College Board. Visit the College Board on the Web: www.collegeboard.com.

Given a design for a class, either their own or one provided, students should then be
able to implement the class. They should also be able to extend a given class using
inheritance, thereby creating a subclass with modified or additional functionality.

An interface is a specification for a set of operations that a class must implement. In
 interface, that can be specified for this

purpose, so that another class can be specified to implement that interface. Students
should be able to write a class that implements an interface.

C. Java Library Classes
An important aspect of modern programming is the existence of extensive libraries
that supply many common classes and methods. One part of learning the skill of
programming is to learn about available libraries and their appropriate use. The AP CS A

familiar, and students should be able to recognize the appropriate use of these classes.
In addition, students should recognize the possibilities of reusing components of

their own code or other examples of code, such as the AP Computer Science Case
Study, in different programs.

D. Design as an Exam Topic
As noted in the topic outline, the AP CS A Exam may include questions that ask about
the design as well as the implementation of classes or a simple hierarchy of classes.

A design question would provide students with a description of the type of
information and operations on that information that an object should encapsulate.
Students would then be required to provide part or all of an interface or class
declaration to define such objects. An example of this type of question appears as one
of the sample free-response questions (see page 38).

A design question may require a student to develop a solution that includes the
following:

 extends

 implements

 ■ meaningful names
 ■ appropriate parameters
 ■ appropriate return types

 public or private

 private

 public methods

A design question might only require that a student specify the appropriate
constructor and method signatures (access specifier, return type, method identifier,
parameter list) and not require that the body of the constructors or methods be
implemented. A question focusing on a simple class hierarchy might also require
implementation of the body of some or all methods for some of the classes.

13© 2010 The College Board. Visit the College Board on the Web: www.collegeboard.com.

II. Program Implementation
To implement a program, one must understand the fundamental programming
constructs of the language, as well as the design of the program. The fundamental
principles of encapsulation and information hiding should be applied when imple-
menting classes and data structures. A good program will often have components
that can be used in other programs.

There are topics not included in the course outline that will be part of any intro-
ductory course. For example, input and output must be part of a course on computer
programming. However, in a modern object-oriented approach to programming, there
are many ways to handle input and output, including console-based character I/O,
graphical user interfaces, and applets. Consequently, the AP CS A course does not
prescribe any particular approach and will not test the details of input and output
(except for the basic console output, System.out.print/ln
teachers may use an approach that fits their own style and whatever textbook and
other materials they use.

Students are expected to demonstrate an understanding of the concept of recursion
and to trace recursive method calls.

III. Program Analysis
Some of the techniques for finding and correcting errors, for “debugging” a program
or segment of a program, include hand-tracing code, adding extra output statements to
trace the execution of a program, or using a debugger to provide information about the
program as it runs and when it crashes. Students should be encouraged to experiment
with available debugging facilities. However, these will not be tested since they vary
from system to system.

Students should be able to read and modify code for a program. They should also
be able to extend existing code by taking a given class declaration and declaring a
new class using inheritance to add or change the given class’ functionality. The
AP Computer Science Case Study contains examples of using inheritance to create
new classes.

Students in the AP CS A course should understand runtime exceptions; they also
need to be familiar with the concepts of preconditions, postconditions, and assertions
and correctly interpret them when presented as pseudocode. The assert keyword

Students should be able to make informal comparisons of running times of different
pieces of code: for example, by counting the number of loop iterations needed for a
computation.

Many programs involve numerical computations and therefore are limited by the
finite representations of numbers in a computer. Students should understand the
representation of positive integers in different bases, particularly decimal, binary,
hexadecimal, and octal. They should also understand the consequences of the finite
representations of integer and real numbers, including the limits on the magnitude
of numbers represented, the imprecision of floating point computation, and round-off
error.

14 © 2010 The College Board. Visit the College Board on the Web: www.collegeboard.com.

IV. Standard Data Structures
There are a number of standard data structures used in programming. Students
should understand these data structures and their appropriate use. Students need to
be able to use the standard representations of integers, real numbers, and Boolean

, char and float, are not part

 String class and the
methods of the String

Students should be comfortable working with one-dimensional and two-dimensional
 ArrayList class to

implement such lists. They should be able to use either in a program and should be
able to select the most appropriate one for a given application. The methods for the List
interface (and its implementation by the ArrayList class) for which students are

V. Standard Algorithms
The AP CS A course indicates several standard algorithms. These serve as good
solutions to standard problems. These algorithms, many of which are intertwined with
data structures, provide excellent examples for the analysis of program efficiency.
Programs implementing standard algorithms also serve as good models for program
design.

The AP CS A course includes standard algorithms for accessing arrays, including
traversing an array and inserting into and deleting from an array. Students should also
know the two standard searches, sequential search and binary search, and the relative
efficiency of each. Finally, there are three standard sorts that are required for the AP
CS A course: the two most common quadratic sorts—Selection sort and Insertion
sort—and the more efficient Merge sort. Of course, the latter implies that students
know the merge algorithm for sorted lists.

Students in the AP CS A course are not required to know the asymptotic (Big-Oh)
analysis of these algorithms, but they should understand that Mergesort is advanta-
geous for large data sets and be familiar with the differences between Selection and
Insertion sort.

VI. Computing in Context
Given the tremendous impact computers and computing have on almost every aspect
of society, it is important that intelligent and responsible attitudes about the use of
computers be developed as early as possible. The applications of computing that are
studied in the AP CS A course provide opportunities to discuss the impact of
computing. Typical issues include the:

individual’s right to privacy;

systems;

15© 2010 The College Board. Visit the College Board on the Web: www.collegeboard.com.

the resulting need for software engineering standards; and

fair use of intellectual property.

Attitudes are acquired, not taught. Hence, references to responsible use of computer
systems should be integrated into the AP CS A course wherever appropriate, rather
than taught as a separate unit. Participation in the AP CS A course provides an
opportunity to discuss issues such as the responsible use of a system and respect for
the rights and property of others. Students should learn to take responsibility for the
programs they write and for the consequences of the use of their programs.

C A S E S T U D I E S
Case studies provide a vehicle for presenting many of the topics of the AP Computer
Science A course. They provide examples of good style, programming language
constructs, fundamental data structures, algorithms, and applications. Large programs
give the student practice in the management of complexity and motivate the use of
certain programming practices (including decomposition into classes, use of
inheritance and interfaces, message passing between interacting objects, and selection
of data structures tailored to the needs of the classes) in a much more complete way
than do small programs.

Case studies also allow the teacher to show concretely the design and implemen-
tation decisions leading to the solution of a problem and thus to focus more effectively
on those aspects of the programming process. This approach gives the student a
model of the programming process as well as a model program. The use of case
studies also gives the student a context for seeing the importance of good design when
a program is to be modified.

The AP Computer Science A Exam will include questions based on the case study
described in the document AP Computer Science Case Study. These questions may
explore design choices, alternative choices of data structures, extending a class via
inheritance, etc., in the context of a large program without requiring large amounts of
reading during the exam. The AP Computer Science A Exam will contain several
multiple-choice questions and one free-response question targeting material from the
case study. Printed excerpts from the case study programs will accompany the exam.
Questions will deal with activities such as the following:

a. modifying the procedural and data organization of the case study program to
correspond to changes in the program specification;

b. extending the case study program by writing new code (including new methods
for existing classes, new subclasses extending existing classes, and new classes);

c. evaluating alternatives in the representation and design of objects and classes;

d. evaluating alternative incremental development strategies; and

e. understanding how the objects/classes of the program interact.

16 © 2010 The College Board. Visit the College Board on the Web: www.collegeboard.com.

Sample questions for the AP Computer Science Case Study appear on AP Central. The
text and code for the AP Computer Science Case Study are available for downloading
from AP Central.

T H E E X A M
The AP Computer Science A Exam is 3 hours long and seeks to determine how well
students have mastered the concepts and techniques contained in the course outline.

The exam consists of two sections: a multiple-choice section (40 questions in
1 hour and 15 minutes), which tests proficiency in a wide variety of topics, and a free-
response section (4 questions in 1 hour and 45 minutes), which requires the student to
demonstrate the ability to solve problems involving more extended reasoning.

The multiple-choice and the free-response sections of the AP Computer Science A
Exam require students to demonstrate their ability to design, write, analyze, and
document programs and subprograms.

Minor points of syntax are not tested on the exam. All code given is consistent with

sections of the exam, an appendix containing a quick reference to both the case study

In the determination of the grade for the exam, the multiple-choice section and the
free-response section are given equal weight. Because the exam is designed for full
coverage of the subject matter, it is not expected that many students will be able to
correctly answer all the questions in either the multiple-choice section or the free-
response section.

The Appendix mentioned in the Notes in test directions on pages 17 and 38
refers to material students receive on exam day, not an Appendix in this Course
Description.

