
Searching and sorting
Garfield AP CS

Why search and sort?
• Ever used Google?

• Ever sorted your music alphabetically?

• Most interesting programs search and/or sort

- Baby Names

- Shopping Cart

• The AP test will have a couple of questions on search and sort

Sequential search
• sequential search: Locates a target value in an array/list by

examining each element from start to finish.

– How many elements will it need to examine?

– Example: Searching the array below for the value 42:

– Notice that the array is sorted. Could we take advantage of this?

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

value -4 2 7 10 15 20 22 25 30 36 42 50 56 68 85 92 103

i

Sequential search
• sequential search: Locates a target value in an array/list by

examining each element from start to finish.

– How many elements will it need to examine?

– Example: Searching the array below for the value 42:

– Notice that the array is sorted. Could we take advantage of this?

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

value -4 2 7 10 15 20 22 25 30 36 42 50 56 68 85 92 103

i

Guessing game
• I’m thinking of a number between 0 and 100...

• What’s the best strategy?

Binary Search
• binary search: Locates a target value in a sorted array/list by

successively eliminating half of the array from consideration.

– How many elements will it need to examine?

– Example: Searching the array below for the value 42:

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

value -4 2 7 10 15 20 22 25 30 36 42 50 56 68 85 92 103

Binary Search
• binary search: Locates a target value in a sorted array/list by

successively eliminating half of the array from consideration.

– How many elements will it need to examine?

– Example: Searching the array below for the value 42:

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

value -4 2 7 10 15 20 22 25 30 36 42 50 56 68 85 92 103

min mid max

Binary Search
• binary search: Locates a target value in a sorted array/list by

successively eliminating half of the array from consideration.

– How many elements will it need to examine?

– Example: Searching the array below for the value 42:

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

value -4 2 7 10 15 20 22 25 30 36 42 50 56 68 85 92 103

min mid max

Binary Search
• binary search: Locates a target value in a sorted array/list by

successively eliminating half of the array from consideration.

– How many elements will it need to examine?

– Example: Searching the array below for the value 42:

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

value -4 2 7 10 15 20 22 25 30 36 42 50 56 68 85 92 103

min mid max

Binary Search
• binary search: Locates a target value in a sorted array/list by

successively eliminating half of the array from consideration.

– How many elements will it need to examine?

– Example: Searching the array below for the value 42:

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

value -4 2 7 10 15 20 22 25 30 36 42 50 56 68 85 92 103

mid

Iterative Binary Search
// Returns the index of an occurrence of target in a,
// or a negative number if the target is not found.
// Precondition: elements of a are in sorted order
public static int binarySearch(int[] a, int target) {
 int min = 0;
 int max = a.length - 1;

 while (min <= max) {
 int mid = (min + max) / 2;
 if (a[mid] < target) {
 min = mid + 1;
 } else if (a[mid] > target) {
 max = mid - 1;
 } else {
 return mid; // target found
 }
 }

 return -(min + 1); // target not found
}

Divide and conquer!
• Class of algorithms
• Break down a problem into two or more sub-problems of the

same (or related) type until these become simple enough to be
solved directly

• Binary search just yields one sub problem so it’s not always
included

• Nicely expressed recursively

Recursive Binary
Search

• Write a recursive binarySearch method.
– If the target value is not found, return its negative insertion point.

int index = binarySearch(data, 42); // 10
int index2 = binarySearch(data, 66); // -14

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

value -4 2 7 10 15 20 22 25 30 36 42 50 56 68 85 92 103

Recursive code
// Returns the index of an occurrence of the given value in
// the given array, or a negative number if not found.
// Precondition: elements of a are in sorted order
public static int binarySearch(int[] a, int target) {
 return binarySearch(a, target, 0, a.length - 1);
}

// Recursive helper to implement search behavior.
private static int binarySearch(int[] a, int target,
 int min, int max) {
 if (min > max) {
 return -1; // target not found
 } else {
 int mid = (min + max) / 2;
 if (a[mid] < target) { // too small; go right
 return binarySearch(a, target, mid + 1, max);
 } else if (a[mid] > target) { // too large; go left
 return binarySearch(a, target, min, mid - 1);
 } else {
 return mid; // target found; a[mid] == target
 }
 }
}

Efficiency
• efficiency: A measure of the use of computing resources by code.

– can be relative to speed (time), memory (space), etc.
– most commonly refers to run time

• Assume the following:
– Any single Java statement takes the same amount of time to run.
– A method call's runtime is measured by the total of the

statements inside the method's body.
– A loop's runtime, if the loop repeats N times, is N times the

runtime of the statements in its body.

Efficiency example
for (int i = 1; i <= N; i++) {
 for (int j = 1; j <= N; j++) {
 statement1;
 }
}

for (int i = 1; i <= N; i++) {
 statement2;
 statement3;
 statement4;
 statement5;
}

• How many statements will execute if N = 10? If N = 1000?

Efficiency example
for (int i = 1; i <= N; i++) {
 for (int j = 1; j <= N; j++) {
 statement1;
 }
}

for (int i = 1; i <= N; i++) {
 statement2;
 statement3;
 statement4;
 statement5;
}

• How many statements will execute if N = 10? If N = 1000?

N2

Efficiency example
for (int i = 1; i <= N; i++) {
 for (int j = 1; j <= N; j++) {
 statement1;
 }
}

for (int i = 1; i <= N; i++) {
 statement2;
 statement3;
 statement4;
 statement5;
}

• How many statements will execute if N = 10? If N = 1000?

N2

4N

Efficiency example
for (int i = 1; i <= N; i++) {
 for (int j = 1; j <= N; j++) {
 statement1;
 }
}

for (int i = 1; i <= N; i++) {
 statement2;
 statement3;
 statement4;
 statement5;
}

• How many statements will execute if N = 10? If N = 1000?

N2 + 4N

N2

4N

Complexity classes
• complexity class: A category of algorithm efficiency based on

the algorithm's relationship to the input size N.

Class Big-Oh If you double N, ... Example

constant O(1) unchanged 10ms

logarithmic O(log2 N) increases slightly 175ms

linear O(N) doubles 3.2 sec

log-linear O(N log2 N) slightly more than doubles 6 sec

quadratic O(N2) quadruples 1 min 42 sec

cubic O(N3) multiplies by 8 55 min

...

exponential O(2N) multiplies drastically 5 * 1061 years

Binary Search Efficiency
• binary search successively eliminates half of the elements.

– Algorithm: Examine the middle element of the array.
• If it is too big, eliminate the right half of the array and repeat.
• If it is too small, eliminate the left half of the array and repeat.
• Else it is the value we're searching for, so stop.

– Which indexes does the algorithm examine to find value 22?
– What is the runtime complexity class of binary search?

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

value -4 -1 0 2 3 5 6 8 11 14 22 29 31 37 56

Binary Search
Complexity

Binary Search
Complexity

• For an array of size N, it eliminates ½ until 1 element remains.
 N, N/2, N/4, N/8, ..., 4, 2, 1

Binary Search
Complexity

• For an array of size N, it eliminates ½ until 1 element remains.
 N, N/2, N/4, N/8, ..., 4, 2, 1

– How many divisions does it take?

Binary Search
Complexity

• For an array of size N, it eliminates ½ until 1 element remains.
 N, N/2, N/4, N/8, ..., 4, 2, 1

– How many divisions does it take?

• Think of it from the other direction:
– How many times do I have to multiply by 2 to reach N?

Binary Search
Complexity

• For an array of size N, it eliminates ½ until 1 element remains.
 N, N/2, N/4, N/8, ..., 4, 2, 1

– How many divisions does it take?

• Think of it from the other direction:
– How many times do I have to multiply by 2 to reach N?
 1, 2, 4, 8, ..., N/4, N/2, N

Binary Search
Complexity

• For an array of size N, it eliminates ½ until 1 element remains.
 N, N/2, N/4, N/8, ..., 4, 2, 1

– How many divisions does it take?

• Think of it from the other direction:
– How many times do I have to multiply by 2 to reach N?
 1, 2, 4, 8, ..., N/4, N/2, N
– Call this number of multiplications "x".

Binary Search
Complexity

• For an array of size N, it eliminates ½ until 1 element remains.
 N, N/2, N/4, N/8, ..., 4, 2, 1

– How many divisions does it take?

• Think of it from the other direction:
– How many times do I have to multiply by 2 to reach N?
 1, 2, 4, 8, ..., N/4, N/2, N
– Call this number of multiplications "x".

Binary Search
Complexity

• For an array of size N, it eliminates ½ until 1 element remains.
 N, N/2, N/4, N/8, ..., 4, 2, 1

– How many divisions does it take?

• Think of it from the other direction:
– How many times do I have to multiply by 2 to reach N?
 1, 2, 4, 8, ..., N/4, N/2, N
– Call this number of multiplications "x".

 2x = N

Binary Search
Complexity

• For an array of size N, it eliminates ½ until 1 element remains.
 N, N/2, N/4, N/8, ..., 4, 2, 1

– How many divisions does it take?

• Think of it from the other direction:
– How many times do I have to multiply by 2 to reach N?
 1, 2, 4, 8, ..., N/4, N/2, N
– Call this number of multiplications "x".

 2x = N
 x = log2 N

Binary Search
Complexity

• For an array of size N, it eliminates ½ until 1 element remains.
 N, N/2, N/4, N/8, ..., 4, 2, 1

– How many divisions does it take?

• Think of it from the other direction:
– How many times do I have to multiply by 2 to reach N?
 1, 2, 4, 8, ..., N/4, N/2, N
– Call this number of multiplications "x".

 2x = N
 x = log2 N

Binary Search
Complexity

• For an array of size N, it eliminates ½ until 1 element remains.
 N, N/2, N/4, N/8, ..., 4, 2, 1

– How many divisions does it take?

• Think of it from the other direction:
– How many times do I have to multiply by 2 to reach N?
 1, 2, 4, 8, ..., N/4, N/2, N
– Call this number of multiplications "x".

 2x = N
 x = log2 N

• Binary search is in the logarithmic complexity class.

Time graphs
• For small data sets, linear search is faster!

Best/worst cases
• Linear search

• best case: item at front and only one comparison needed
• worst case: item not there and n comparisons needed
• average case: item somewhere in middle and ~n/2 needed

• Binary search
• best case: item in middle and only one comparison needed
• worst case: item not there and log(n) comparisons needed
• average case: item somewhere in middle and ~log(n)/2

