Recursion

Garfield AP Computer Science

As usual, significant borrowings from Stuart Reges and Marty Stepp at UW -- thanks!!

Sunday, April 11, 2010

Definitions

e recursion: The definition of an operation in terms of itself.

— Solving a problem using recursion depends on solving
smaller occurrences of the same problem.

e recursive programming: Writing methods that call
themselves to solve problems recursively.

— An equally powerful substitute for iteration (loops)
— Particularly well-suited to solving certain types of problems

compute() :I

Sunday, April 11, 2010

VVhy recursion

e "cultural experience" - A different way of thinking of problems
e Can solve some kinds of problems better than iteration
e L eads to elegant, simplistic, short code (when used well)

e Many programming languages ("functional” languages such as
Scheme, ML, and Haskell) use recursion exclusively (no loops)

e The AP test will include questions that require you to read and
interpret recursive code

Sunday, April 11, 2010

Cases

e Every recursive algorithm involves at least 2 cases:

— base case: A simple occurrence that can be answered directly.

— recursive case: A more complex occurrence of the problem that
cannot be directly answered, but can instead be described in
terms of smaller occurrences of the same problem.

— Some recursive algorithms have more than one base or recursive
case, but all have at least one of each.

— A crucial part of recursive programming is identifying these cases.

Sunday, April 11, 2010

Call stack

stack: Data structure from which elements are retrieved in the reverse of the order they
were added. Think of a stack of papers.

Computers have a call stack -- method calls are pushed on a stack and the methods are
popped when they return

Visualization of a stack holding ints:

8
2 2 2
Step O Step 1 Step 2 Step 3 Step 4
Empty Stack Push “2” Push “8” Pop: Gets 8 Pop: Gets 2

Sunday, April 11, 2010

Doubling method

public static int times2 (int wvalue) ({
if(value == 0) {
return 0O;
} else {
return times2 (value - 1) + 2;

The best way to get a feel for how this is working is to draw out the call stack as we go!

Sunday, April 11, 2010

Line of stars

e Consider the following method to print a line of * characters:

// Prints a line containing the given number of stars.
// Precondition: n >= 0
public static void printStars (int n) {
for (int 1 = 0; 1 < n; 1i++) {
System.out.print ("*");

}
System.out.println() ; // end the line of output

o Write a recursive version of this method (that calls itself).
— Solve the problem without using any loops.
— Hint: Your solution should print just one star at a time.

Sunday, April 11, 2010

Base case

e What are the cases to consider?
— What is a very easy number of stars to print without a loop?

Sunday, April 11, 2010

Base case

e What are the cases to consider?
— What is a very easy number of stars to print without a loop?

public static void printStars (int n) {
if (n == 1) {
// base case; just print one star
System.out.println ("*");
} else {

}

Sunday, April 11, 2010

More cases

e Handling additional cases, with no loops (in a bad way):

public static void printStars(int n) {

if (n == 1) {

// base case; just print one star
System.out.println ("*");

} else if (n == 2) {
System.out.print ("*");
System.out.println ("*");

} else if (n == 3) {
System.out.print ("*");
System.out.print ("*");
System.out.println("*");

} else if (n == 4) {
System.out.print ("*");
System.out.print ("*");
System.out.print ("*");
System.out.println ("*");

} else

Sunday, April 11, 2010

Improvement

e Taking advantage of the repeated pattern (somewhat better):

public static void printStars(int n) {
1f (n == 1) {
// base case; just print one star
System.out.println("*");

} else if (n == 2) {
System.out.print ("*");
printStars (1) ; // prints "*"
} else if (n == 3) {
System.out.print ("*");
printStars (2) ; // prints "**"
} else if (n == 4) {
System.out.print ("*");
printStars (3) ; // prints "***"
} else

Sunday, April 11, 2010

Recursive case

e Condensing the recursive cases into a single case:

public static void printStars(int n) {

if (n == 1) {
// base case; just print one star
System.out.println("*");

} else {
// recursive case; print one more star
System.out.print ("*");
printStars(n - 1);

Sunday, April 11, 2010

Recursive tracing

e Consider the following recursive method:

public static 1nt mystery(int n)
if (n < 10) {
return n;
} else {
int a = n / 10;
int b =n % 10;
return mystery(a + b);

}

— What is the result of the following call?
mystery (648)

Sunday, April 11, 2010

Trace

mysterv (648) :

m int a = 648 / 10; // 64
» int b = 648 % 10; // 8

» return mystery(a + b); // mystery(72)

mysterv (72) :

mint a = 72 / 10; /] 7
mint b = 72 % 10; // 2
" return mystery(a + b); // mystery (9)

mysterv(9) :

m return 9;

Sunday, April 11, 2010

Reverse file

e Write a recursive method reverseLines that accepts a file
Scanner and prints the lines of the file in reverse order.

— Example input file: Expected console output:
Roses are red, Are belong to you.
Violets are blue. All my base
All my base Violets are blue.
Are belong to you. Roses are red,

— What are the cases to consider?
e How can we solve a small part of the problem at a time?

e What is a file that is very easy to reverse?

Sunday, April 11, 2010

Pseudocode

e Reversing the lines of a file:
— Read a line L from the file.
— Print the rest of the lines in reverse order.
— Print the line L.

o If only we had a way to reverse the rest of the lines of the file....

Sunday, April 11, 2010

Tracing our algorithm

e Use the call stack to visualize how the code works

reverselines (new Scanner ("poem.txt"));

input file: output:

—» Roses are red,
Violets are blue.
All my base

Are belong to you.

16

Sunday, April 11, 2010

Tracing our algorithm

e Use the call stack to visualize how the code works

reverselines (new Scanner ("poem.txt"));

public static void reverselines (Scanner 1nput) {
1f (input.hasNextLine()) {
String line = input.nextlLine(); // "Roses are red,"
reverseLlines (input) ;
System.out.println(line);

input file: output:

—» Roses are red,
Violets are blue.
All my base

Are belong to you.

16

Sunday, April 11, 2010

Tracing our algorithm

e Use the call stack to visualize how the code works

reverselines (new Scanner ("poem.txt"));

public static void reverselines (Scanner 1nput) {
1f (input.hasNextLine()) {
String line = input.nextlLine(); // "Roses are red,"
reverseLlines (input) ;
System.out.println(line);

input file: output:

Roses are red,

—p V10lets are blue.
All my base

Are belong to you.

16

Sunday, April 11, 2010

Tracing our algorithm

e Use the call stack to visualize how the code works

reverselines (new Scanner ("poem.txt"));

public static void reverselines (Scanner 1nput) {

1f (input.hasNextLine()) {
Strinag line = input.nextline(): [/ "Roses are red."
public static void reverselines (Scanner input) {
1f (input.hasNextLine()) {
String line = input.nextlLine(); // "Violets are blue."

reverseLlines (input) ;
System.out.println(line);

input file: output:

Roses are red,

—p V10lets are blue.
All my base

Are belong to you.

16

Sunday, April 11, 2010

Tracing our algorithm

e Use the call stack to visualize how the code works

reverselines (new Scanner ("poem.txt"));

public static void reverselines (Scanner 1nput) {

1f (input.hasNextLine()) {
Strinag line = input.nextline(): [/ "Roses are red."
public static void reverselines (Scanner input) {
1f (input.hasNextLine()) {
String line = input.nextlLine(); // "Violets are blue."

reverseLlines (input) ;
System.out.println(line);

input file: output:

Roses are red,
Violets are Dblue.
—p All my base

Are belong to you.

16

Sunday, April 11, 2010

Tracing our algorithm

e Use the call stack to visualize how the code works

reverselines (new Scanner ("poem.txt"));

public static void reverselines (Scanner 1nput) {

1f (input.hasNextLine()) {
Strina line = input.nextliine(): [/ "Roses are red."
public static void reverselines (Scanner input) {
1f (input.hasNextLine()) {
L+ +ina 1l1ne = innmiit newtT.ine () - // "\Iinlete area hlnnea "
public static void reverselines (Scanner input) {
1f (iInput.hasNextLine()) {

String line = input.nextLine(); // "All my base"
reverseLlines (input) ;
System.out.println(line);

input file: output:

Roses are red,
Violets are Dblue.
—p All my base

Are belong to you.

16

Sunday, April 11, 2010

Tracing our algorithm

e Use the call stack to visualize how the code works

reverselines (new Scanner ("poem.txt"));

public static void reverselines (Scanner 1nput) {

1f (input.hasNextLine()) {
Strina line = input.nextliine(): [/ "Roses are red."
public static void reverselines (Scanner input) {
1f (input.hasNextLine()) {
L+ +ina 1l1ne = innmiit newtT.ine () - // "\Iinlete area hlnnea "
public static void reverselines (Scanner input) {
1f (iInput.hasNextLine()) {

String line = input.nextLine(); // "All my base"
reverseLlines (input) ;
System.out.println(line);

input file: output:

Roses are red,
Violets are blue.
All my base

Are belong to you.

>

16

Sunday, April 11, 2010

Tracing our algorithm

e Use the call stack to visualize how the code works

reverselines (new Scanner ("poem.txt"));

public static void reverselines (Scanner 1nput) {

1f (input.hasNextLine()) {
Strinag line = input.nextline(): [/ "Roses are red."
public static void reverselines (Scanner input) {
1f (input.hasNextLine()) {
L+ +ina 1l1ne = innmiit newtT.ine () - // "\Iinlete area hlnnea "
public static void reverselines (Scanner input) {
1f (input.hasNextLine()) {

= ; . " 1)&15363"

public static void reverselines (Scanner 1nput) {
1f (input.hasNextLine()) {
String line = input.nextLine(); // "Are belong to you."
reverseLlines (input) ;
System.out.println(line);

J

LI lr'“ LB B — I | W'WF'“'GI

Roses are red,
Violets are blue.
All my base

Are belong to you.

- 16

Sunday, April 11, 2010

Tracing our algorithm

e Use the call stack to visualize how the code works

reverselines (new Scanner ("poem.txt"));

public static void reverselines (Scanner 1nput) {

1f (input.hasNextLine()) {
Strinag line = input.nextline(): [/ "Roses are red."
public static void reverselines (Scanner input) {
1f (input.hasNextLine()) {
L+ +ina 1l1ne = innmiit newtT.ine () - // "\Iinlete area hlnnea "
public static void reverselines (Scanner input) {
1f (input.hasNextLine()) {

= ; . " 1)&15363"

public static void reverselines (Scanner 1nput) {
1f (input.hasNextLine()) {
String line = input.nextLine(); // "Are belong to you."
reverseLlines (input) ;
System.out.println(line);

J

LI lr'“ LB B — I | W'WF'“'GI

Roses are red,
Violets are blue.
All my base

Are belong to you.

16

Sunday, April 11, 2010

Tracing our algorithm

e Use the call stack to visualize how the code works

reverselines (new Scanner ("poem.txt"));

public static void reverselines (Scanner 1nput) {

1f (input.hasNextLine()) {
Strina line = input.nextliine(): [/ "Roses are red."
public static void reverselines (Scanner input) {
1f (input.hasNextLine()) {
L+ +ina 1l1ne = innmiit newtT.ine () - // "\Iinlete area hlnnea "
public static void reverselines (Scanner input) {
1f (input.hasNextLine()) {
' ' =] ' : " base"
public static void reverselines (Scanner 1nput) {
1f (input.hasNextLine()) {
Strina line = inpnut nextl.ine () : // "Are belona to vonn "
public static void reverselines (Scanner input) {

if (input.hasNextLine()) { // false

}

Roses are red,
Violets are blue.
All my base

Are belong to you.

16

Sunday, April 11, 2010

Tracing our algorithm

e Use the call stack to visualize how the code works

reverselines (new Scanner ("poem.txt"));

public static void reverselines (Scanner 1nput) {

1f (input.hasNextLine()) {
Strinag line = input.nextline(): [/ "Roses are red."
public static void reverselines (Scanner input) {
1f (input.hasNextLine()) {
L+ +ina 1l1ne = innmiit newtT.ine () - // "\Iinlete area hlnnea "
public static void reverselines (Scanner input) {
1f (input.hasNextLine()) {

= ; . " 1)&15363"

public static void reverselines (Scanner 1nput) {
1f (input.hasNextLine()) {
String line = input.nextLine(); // "Are belong to you."
reverseLlines (input) ;
System.out.println(line);

J

LI lr'“ LB B — I | W'WF'“'GI

Roses are red,
Violets are blue.
All my base

Are belong to you.

16

Sunday, April 11, 2010

Tracing our algorithm

e Use the call stack to visualize how the code works

reverselines (new Scanner ("poem.txt"));

public static void reverselines (Scanner 1nput) {

1f (input.hasNextLine()) {
Strinag line = input.nextline(): [/ "Roses are red."
public static void reverselines (Scanner input) {
1f (input.hasNextLine()) {
L+ +ina 1l1ne = innmiit newtT.ine () - // "\Iinlete area hlnnea "
public static void reverselines (Scanner input) {
1f (input.hasNextLine()) {

= ; . " 1)515563"

public static void reverselines (Scanner 1nput) {
1f (input.hasNextLine()) {
String line = input.nextLine(); // "Are belong to you."
reverseLlines (input) ;
System.out.println(line);

J

LI lr'“ LB B — I | W'WF'“'GI

Roses are red, Are belong to you.
Violets are blue.
All my base

Are belong to you.

16

Sunday, April 11, 2010

Tracing our algorithm

e Use the call stack to visualize how the code works

reverselines (new Scanner ("poem.txt"));

public static void reverselines (Scanner 1nput) {

1f (input.hasNextLine()) {
Strinag line = input.nextline(): [/ "Roses are red."
public static void reverselines (Scanner input) {
1f (input.hasNextLine()) {
L+ +ina 1l1ne = innmiit newtT.ine () - // "\Iinlete area hlnnea "
public static void reverselines (Scanner input) {
1f (input.hasNextLine()) {

String line = input.nextLine(); // "All my base"
reverseLlines (input) ;
System.out.println(line);

input file: output:

Roses are red, Are belong to you.
Violets are blue.
All my base

Are belong to you.

16

Sunday, April 11, 2010

Tracing our algorithm

e Use the call stack to visualize how the code works

reverselines (new Scanner ("poem.txt"));

public static void reverselines (Scanner 1nput) {

1f (input.hasNextLine()) {
Strinag line = input.nextline(): [/ "Roses are red."
public static void reverselines (Scanner input) {
1f (input.hasNextLine()) {
L+ +ina 1l1ne = innmiit newtT.ine () - // "\Iinlete area hlnnea "
public static void reverselines (Scanner input) {
1f (input.hasNextLine()) {

String line = input.nextLine(); // "All my base"
reverseLlines (input) ;
System.out.println(line);

input file: output:
Roses are red, Are belong to you.
Violets are blue. All my base

All my base
Are belong to you.

16

Sunday, April 11, 2010

Tracing our algorithm

e Use the call stack to visualize how the code works

reverselines (new Scanner ("poem.txt"));

public static void reverselines (Scanner 1nput) {

1f (input.hasNextLine()) {
Strinag line = input.nextline(): [/ "Roses are red."
public static void reverselines (Scanner input) {
1f (input.hasNextLine()) {
String line = input.nextlLine(); // "Violets are blue."

reverseLlines (input) ;
System.out.println(line);

input file: output:
Roses are red, Are belong to you.
Violets are blue. All my base

All my base
Are belong to you.

16

Sunday, April 11, 2010

Tracing our algorithm

e Use the call stack to visualize how the code works

reverselines (new Scanner ("poem.txt"));

public static void reverselines (Scanner 1nput) {

1f (input.hasNextLine()) {
Strinag line = input.nextline(): [/ "Roses are red."
public static void reverselines (Scanner input) {
1f (input.hasNextLine()) {
String line = input.nextlLine(); // "Violets are blue."

reverseLlines (input) ;
System.out.println(line);

input file: output:
Roses are red, Are belong to you.
Violets are blue. All my base
All my base Violets are blue.
Are belong to you.
16

Sunday, April 11, 2010

Tracing our algorithm

e Use the call stack to visualize how the code works

reverselines (new Scanner ("poem.txt"));

public static void reverselines (Scanner 1nput) {
1f (input.hasNextLine()) {
String line = input.nextlLine(); // "Roses are red,"
reverseLlines (input) ;
System.out.println(line);

input file: output:
Roses are red, Are belong to you.
Violets are blue. All my base
All my base Violets are blue.
Are belong to you.
16

Sunday, April 11, 2010

Tracing our algorithm

e Use the call stack to visualize how the code works

reverselines (new Scanner ("poem.txt"));

public static void reverselines (Scanner 1nput) {
1f (input.hasNextLine()) {
String line = input.nextlLine(); // "Roses are red,"
reverseLlines (input) ;
System.out.println(line);

input file: output:
Roses are red, Are belong to you.
Violets are blue. All my base
All my base Violets are blue.
Are belong to you. Roses are red,
16

Sunday, April 11, 2010

Tracing our algorithm

e Use the call stack to visualize how the code works

reverselines (new Scanner ("poem.txt"));

input file: output:
Roses are red, Are belong to you.
Violets are blue. All my base
All my base Violets are blue.
Are belong to you. Roses are red,
16

Sunday, April 11, 2010

Tracing our algorithm

e Use the call stack to visualize how the code works

reverselines (new Scanner ("poem.txt"));

input file: output:
Roses are red, Are belong to you.
Violets are blue. All my base
All my base Violets are blue.
Are belong to you. Roses are red,
16

Sunday, April 11, 2010

