
AP Computer Science

Polymorphism and
interfaces

Substitutability

ActorWorld world = new ActorWorld();
SpiralBug alice = new SpiralBug(6);
BoxBug bob = new BoxBug(3);
world.add(alice);
world.add(bob);
world.show();

But aren’t bob and alice two different types?

• Substitutability is the ability for an object of a subclass to
be used successfully anywhere the object of the
superclass is used.

3

 polymorphism: Ability for the same code to be
used with different types of objects and behave
differently with each.

 System.out.println can print any type of
object.

 Each one displays in its own way on the console.

 world.add(<actor>) can take any type of actor.

 Each one moves, etc. in its own way

Polymorphism

4

 A variable of type T can hold an object of any subclass of T.

 Employee ed = new Lawyer();

 You can call any methods from the Employee
class on ed.

 When a method is called on ed, it behaves as a
Lawyer.
 System.out.println(ed.getSalary()); // 50000.0

 System.out.println(ed.getVacationForm()); // pink

Coding with polymorphism

5

 You can pass any subtype of a parameter's type.

public class EmployeeMain {
 public static void main(String[] args) {
 Lawyer lisa = new Lawyer();
 Secretary steve = new Secretary();
 printInfo(lisa);
 printInfo(steve);
 }

 public static void printInfo(Employee empl) {
 System.out.println("salary: " + empl.getSalary());
 System.out.println("v.days: " + empl.getVacationDays());
 System.out.println("v.form: " + empl.getVacationForm());
 System.out.println();
 }
}

OUTPUT:

salary: 50000.0 salary: 50000.0
v.days: 15 v.days: 10
v.form: pink v.form: yellow

Polymorphism and parameters

Adding actors

• Inheritance relationship

class Bug extends Actor {}
class BoxBug extends Bug {}
class SpiralBug extends Bug {}

• Each inherits the implementation of
putSelfInGrid from Actor

• In ActorWorld:
public void add(Location loc, Actor occupant) {
 occupant.putSelfInGrid(getGrid(), loc);
}

7

 Arrays of superclass types can store any subtype as elements.

public class EmployeeMain2 {
 public static void main(String[] args) {
 Employee[] e = { new Lawyer(), new Secretary(),
 new Marketer(), new LegalSecretary() };

 for (int i = 0; i < e.length; i++) {
 System.out.println("salary: " + e[i].getSalary());
 System.out.println("v.days: " + e[i].getVacationDays());
 System.out.println();
 }
 }
}

Output:

salary: 50000.0
v.days: 15

salary: 50000.0
v.days: 10

salary: 60000.0
v.days: 10

salary: 55000.0
v.days: 10

Polymorphism and arrays

Interfaces

Inheritance limitations

• A class can only extend one superclass

• what about an employee who is a part
time secretary?

• Code is always shared

11

Interfaces
 interface: A list of methods that a class can implement.

 Inheritance gives you an is-a relationship and code-sharing.
 A Lawyer object can be treated as an Employee, and
Lawyer inherits Employee's code.

 Interfaces give you an is-a relationship without code sharing.
 A Rectangle object can be treated as a Shape.

 Analogous to the idea of roles or certifications:

 "I'm certified as a CPA accountant. That means I know how
to compute taxes, perform audits, and do consulting."

 "I'm certified as a Shape. That means I know how
to compute my area and perimeter."

Declaring an interface
public interface name {
 public type name(type name, ..., type name);
 public type name(type name, ..., type name);
 ...
}

Example:

public interface Vehicle {
 public double speed();
 public void setDirection(int direction);
}

 abstract method: A header without an implementation.
 The actual body is not specified, to allow/force different classes to

implement the behavior in its own way.

Shape interface
 All shape classes should have methods perimeter and
area.

 Client code should be able to treat different kinds of shape
objects in the same way, such as:
 Write a method that prints any shape's area and perimeter.
 Create an array of shapes that could hold a mixture of the

various shape objects.
 Write a method that could return a rectangle, a circle, a

triangle, or any other shape we've written.
 Make a DrawingPanel display many shapes on screen.

 Exercise: Write an interface for shapes.

Shape interface
 public interface Shape {
 public double area();
 public double perimeter();
 }

 This interface describes the features common to all shapes.
(Every shape has an area and perimeter.)

Implementing an interface
 public class name implements interface {
 ...
 }

 Example:
 public class Bicycle implements Vehicle {
 ...
 }

 A class can declare that it implements an interface.
 This means the class must contain each of the abstract

methods in that interface. (Otherwise, it will not compile.)

 (What must be true about the Bicycle class for it to compile?)

Interface requirements
 If a class claims to be a Shape but doesn't implement the
area and perimeter methods, it will not compile.

 Example:
 public class Banana implements Shape {
 ...
 }

 The compiler error message:
 Banana.java:1: Banana is not abstract and does not
override abstract method area() in Shape

 public class Banana implements Shape {
 ^

Polymorphism
 Interfaces don't benefit the class so much as the client.

 Interface's is-a relationship lets the client use polymorphism.

 public static void printInfo(Shape s) {
 System.out.println("The shape: " + s);
 System.out.println("area : " + s.area());
 System.out.println("perim: " + s.perimeter());
 }

 Any object that implements the interface may be passed.

 Circle circ = new Circle(12.0);
 Rectangle rect = new Rectangle(4, 7);
 Triangle tri = new Triangle(5, 12, 13);
 printInfo(circ);
 printInfo(tri);
 printInfo(rect);

 Shape[] shapes = {tri, circ, rect};

Interface diagram

Standard Java Interfaces

• Comparable<T> - requires description of
how to compare objects of the type

• Location implements the Comparable
interface (has equals and compareTo)

• List<E> - used to describe data structures
used to store collections of objects

• ArrayList is-a List!!

package info.gridworld.grid;

import java.util.ArrayList;

public interface Grid<E> {
 int getNumRows();

 int getNumCols();

 boolean isValid(Location loc);

 E put(Location loc, E obj);

 E remove(Location loc);

 E get(Location loc);

 ArrayList<Location> getOccupiedLocations();

 ArrayList<Location> getValidAdjacentLocations(Location loc);

 ArrayList<Location> getEmptyAdjacentLocations(Location loc);

 ArrayList<Location> getOccupiedAdjacentLocations(Location loc);

 ArrayList<E> getNeighbors(Location loc);
}

Grid Interface

Bounded v. Unbounded

• Unbounded:
 public boolean isValid(Location loc)
 {
 return true;
 }

• Bounded:
 public boolean isValid(Location loc)
 {
 return 0 <= loc.getRow() && loc.getRow() < getNumRows()
 && 0 <= loc.getCol() && loc.getCol() < getNumCols();
 }

• Both fulfill the Grid contract

Side note: abstract
classes

• UnboundedGrid and BoundedGrid extend
AbstractGrid

• AbstractGrid implements Grid

• AbstractGrid contains methods common to
all implementations

• For example:
 public ArrayList<E> getNeighbors(Location loc)
 {
 ArrayList<E> neighbors = new ArrayList<E>();
 for (Location neighborLoc : getOccupiedAdjacentLocations(loc))
 neighbors.add(get(neighborLoc));
 return neighbors;
 }

