
Garfield AP CS
ArrayLists

• You can’t compare arrays using ==

• You can’t use print or println on an array

• You can’t dynamically change the size of an
array during program execution

Array limitations

3

• Class ArrayList<E> implements the notion of a
list using a partially-filled array

• when you want to use ArrayList, remember to
import java.util.*;

The ArrayList class

4

• think of it as an auto-resizing array that can hold any
type of object, with many convenient methods

• maintains most of the benefits of arrays, such as fast
random access

• frees us from some tedious operations on arrays,
such as sliding elements and resizing

• can call toString on an ArrayList to print its
elements

• [1, 2.65, Marty Stepp, Hello]

ArrayList features

5

• generic class: A type in Java that is written to accept
another type as part of itself.

• ArrayList<E> is a generic class.

• The <E> is a placeholder in which you write the type
of elements you want to store in the ArrayList.

• Example:

ArrayList<String> words = new
ArrayList<String>();

• Now the methods of words will manipulate and
return Strings.

Generic classes

6

• array

String[] names = new String[5];

names[0] = "Jennifer";

String name = names[0];

• ArrayList

ArrayList<String> namesList = new ArrayList<String>();

namesList.add("Jennifer");

String name = namesList.get(0);

ArrayList vs. array

7

• Elements are added dynamically to the list:

ArrayList<String> list = new ArrayList<String>();

System.out.println("list = " + list);

list.add("Tool");
System.out.println("list = " + list);

list.add("Phish");
System.out.println("list = " + list);

list.add("Pink Floyd");
System.out.println("list = " + list);

• Output:

list = []
list = [Tool]
list = [Tool, Phish]
list = [Tool, Phish, Pink Floyd]

Adding elements

8

• Elements can also be removed by index:

System.out.println("before remove list = " + list);

list.remove(0);
list.remove(1);
System.out.println("after remove list = " + list);

• Output:

before remove list = [Tool, U2, Phish, Pink Floyd]

after remove list = [U2, Pink Floyd]

• Notice that as each element is removed, the others shift downward in
position to fill the hole.

• Therefore, the second remove gets rid of Phish, not U2.

Removing elements

9

• You can search the list for particular elements:

if (list.contains("Phish")) {
 int index = list.indexOf("Phish");
 System.out.println(index + " " + list.get(index));

}

if (list.contains("Madonna")) {
 System.out.println("Madonna is in the list");

} else {

 System.out.println("Madonna is not found.");
}

• Output:

2 Phish

Madonna is not found.

• contains tells you whether an element is in the list or not, and indexOf tells you at
which index you can find it.

Searching for elements

10

Method name Description

add(value) adds the given value to the end of the list

add(index, value) inserts the given value before the given index

clear() removes all elements

contains(value) returns true if the given element is in the list

get(index) returns the value at the given index

indexOf(value) returns the first index at which the given element appears in the
list (or -1 if not found)

lastIndexOf(value) returns the last index at which the given element appears in the
list (or -1 if not found)

remove(index) removes value at given index, sliding others back

set(index, value) replaces the element at position index with value and returns the
element formerly at the specified position

size() returns the number of elements in the list

ArrayList methods

11

• Enhanced for loop syntax (“for each loop”)
can be used to examine an ArrayList:

int sum = 0;

for (String s : list) {

 sum += s.length();

}

System.out.println("Total of lengths = " +
sum);

ArrayList and for loop

12

• ArrayLists only contain objects, and primitive values are not objects.

• e.g. ArrayList<int> is not legal

• If you want to store primitives in an ArrayList, you must declare it using a
"wrapper" class as its type.

• example:

 ArrayList<Integer> list = new ArrayList<Integer>();

Primitive type Wrapper class

int Integer

double Double

char Character

boolean Boolean

Wrapper classes

13

• The following list stores int values:

ArrayList<Integer> list = new ArrayList<Integer>();

list.add(13);

list.add(47);

list.add(15);

list.add(9);

int sum = 0;

for (int n : list) {

 sum += n;

}

System.out.println("list = " + list);

System.out.println("sum = " + sum);

• Output:

list = [13, 47, 15, 9]

sum = 84

• Though you must say Integer when declaring the list, you can refer to the elements as type int afterward.

• Java automatically converts between the two using techniques known as boxing and unboxing.

inde
x

0 1 2 1
valu

e
13 47 15 9

Wrapper example

