
Garfield AP Computer Science

Classes

Thanks, Marty Stepp and Stuart Reges!! Most materials adapted from theirs.

Clients of objects

• client program: A program that uses objects.

– Example: Circles is a client of DrawingPanel and Graphics.

Circles.java (client program)

public class Circles {

DrawingPanel.java (class)

public class DrawingPanel {
...

public class Circles {
main(String[] args) {

new DrawingPanel(...)
new DrawingPanel(...)
...

}
}

...
}

Where do objects come from?

• class: A program entity that represents either:

1. A program / module, or

2. A template for a new type of objects.

– The DrawingPanel class is a template for creating – The DrawingPanel class is a template for creating
DrawingPanel objects.

• object: An entity that combines state and behavior.

– object-oriented programming (OOP): Programs that

perform their behavior as interactions between objects.

Blueprint analogy
iPod blueprint

state:
current song
volume
battery life

behavior:
power on/off
change station/song
change volume
choose random song

iPod #1

state:
song = "1,000,000 Miles"
volume = 17
battery life = 2.5 hrs

behavior:
power on/off
change station/song
change volume
choose random song

iPod #2

state:
song = "Letting You"
volume = 9
battery life = 3.41 hrs

behavior:
power on/off
change station/song
change volume
choose random song

iPod #3

state:
song = "Discipline"
volume = 24
battery life = 1.8 hrs

behavior:
power on/off
change station/song
change volume
choose random song

creates

Point objects (desired)

Point p1 = new Point(5, -2);

Point p2 = new Point(); // origin, (0, 0)

• Data in each Point object:

Field name Description

x the point's x-coordinate

• Methods in each Point object:

Method name Description

setLocation(x, y) sets the point's x and y to the given values

translate(dx, dy) adjusts the point's x and y by the given amounts

distance(p) how far away the point is from point p

y the point's y-coordinate

Point class as blueprint
Point class

state:
int x, y
behavior:
setLocation(int x, int y)
translate(int dx, int dy)
distance(Point p)
draw(Graphics g)

– The class (blueprint) describes how to create objects.
– Each object contains its own data and methods.

Point object #1

state:
x = 5, y = -2

behavior:
setLocation(int x, int y)
translate(int dx, int dy)
distance(Point p)
draw(Graphics g)

Point object #2

state:
x = -245, y = 1897

behavior:
setLocation(int x, int y)
translate(int dx, int dy)
distance(Point p)
draw(Graphics g)

Point object #3

state:
x = 18, y = 42

behavior:
setLocation(int x, int y)
translate(int dx, int dy)
distance(Point p)
draw(Graphics g)

Fields

• field: A variable inside an object that is part of its
state.
– Each object has its own copy of each field.

• Declaration syntax:• Declaration syntax:

type name;

– Example:

public class Student {
String name; // each Student object has a
double gpa; // name and gpa field

}

A class and its client

• Point.java is not, by itself, a runnable program.

– A class can be used by client programs.

PointMain.java (client program)

public class PointMain {
... main(args) {

Point.java (class of objects)

public class Point {
int x;

... main(args) {
Point p1 = new Point();
p1.x = 7;
p1.y = 2;

Point p2 = new Point();
p2.x = 4;
p2.y = 3;
...

}
}

int y;
}

x 7 y 2

x 4 y 3

Instance methods

• instance method: One that exists inside each object of a
class and defines behavior of that object.

public type name(parameters) {
statements;

}}

– same syntax as static methods, but without static keyword

Example:

public void shout() {
System.out.println("HELLO THERE!");

}

• Each Point object has its own copy of the translate method, which

operates on that object's state:

Point p1 = new Point();
p1.x = 7;
p1.y = 2;

Point objects w/ method

x 7 y 2

p1

Point p2 = new Point();
p2.x = 4;
p2.y = 3;

p1.translate(4, 0);
p2.translate(0, 4);

public void translate(int dx, int dy) {
// this code can see p1's x and y

}

x 7 y 2

x 4 y 3

public void translate(int dx, int dy) {
// this code can see p2's x and y

}

p2

Kinds of methods

• Instance methods take advantage of an object's state.
– Some methods allow clients to access/modify its state.

• accessor: A method that lets clients examine object
state.state.
– Example: A distanceFromOriginmethod that tells

how far a Point is away from (0, 0).

– Accessors often have a non-void return type.

• mutator: A method that modifies an object's state.
– Example: A translate method that shifts the position

of a Point by a given amount.

Initializing objects

• Currently it takes 3 lines to create a Point and
initialize it:
Point p = new Point();
p.x = 3;
p.y = 8; // tedious

• We'd rather pass the fields' initial values as
parameters:
Point p = new Point(3, 8); // better!

– We are able to this with most types of objects in Java.

Constructors

• constructor: Initializes the state of new objects.

public type(parameters) {
statements;

}

– runs when the client uses the new keyword

– does not specify a return type;

it implicitly returns the new object being created

– If a class has no constructor, Java gives it a default

constructor with no parameters that sets all fields to 0.

Common constructor bugs

• Accidentally writing a return type such as void:
public void Point(int initialX, int initialY) {

x = initialX;
y = initialY;

}

– This is not a constructor at all, but a method!

• Storing into local variables instead of fields ("shadowing"):
public Point(int initialX, int initialY) {

int x = initialX;
int y = initialY;

}

– This declares local variables with the same name as the fields,
rather than storing values into the fields. The fields remain 0.

