Exploring Computer Science

Digital

Analog

- Stored or transmitted signal is direct analogy to original information
- Record: depth of groove varies with sound
- Telephone: current generated in proportion to sound pressure
- AM radio: amplitude of wave directly related to sound

Analog pros/cons

- Simplicity
- Authenticity
- Cheap
- Easily distorted
 - Dust on record
 - Electric motors interfere with radio
 - Stretching of tapes

Digital

- Systems which process numbers
- Derivation of 'digit'
- Copies are always exactly the same
- Lots of manipulations possible
- Loss in sampling

Digital audio

- Sample at a series of discrete time intervals
- For CDs, log 44100 entries for every second

– Sample rate of 44.1kHz

 Each entry is sound pressure to 5 decimal digits for each audio channel

Digital imagery

- Store color/shade information so many times in an inch
- Convert color information to number
 - Limited number of colors can be represented

Compression

• Give up information for smaller storage size

Blinking LED

- Analog voltage change in (capacitor discharge)
- Digital signal out (on or off)

Today: 7-segment display

• Build a digital circuit – a little less guidance!

Binary

- Two symbols: 0 and 1
- In computers: bits (for binary digit)
- Cheaper to make hardware using switches
- Switches have two states: on and off

Binary for 7-segment display

- Uses fewer switches than controlling segments separately
- Now we can use computer devices as input

Convert from binary

2 ⁴ = 1 6	2 ³ = 8	2 ² = 4	2 ¹ = 2	2 ⁰ = 1
0	1	1	0	1
	8 -	⊦ 4 -	+	1 = 13

2 ⁴ = 1 6	2 ³ = 8		2 ² = 4	2 ¹	= 2	2	⁰ = 1
1	1		1		0		0
16	+ 8	+	4				= 28

ASCII

Binary	Glyph	100 1101	<u>M</u>
100 0001	<u>A</u>	100 1110	<u>N</u>
100 0010	<u>B</u>	100 1111	<u>0</u>
100 0011	<u>C</u>	101 0000	<u>P</u>
100 0100	<u>D</u>	101 0001	<u>Q</u>
100 0101	<u>E</u>	101 0010	<u>R</u>
100 0110	E	101 0011	<u>S</u>
100 0111	<u>G</u>	101 0100	Τ
100 1000	H	101 0101	<u>U</u>
100 1001	1	101 0110	V
100 1010	Ţ	101 0111	W
100 1011	<u>K</u>	101 1000	X
100 1100	L	101 1001	Y
		101 1010	<u>Z</u>

Count to 1023 on your fingers

